|
Zero |
\(y[i] = 0\) |
|
Normal distribution |
\(y[i]\) is normally distributed with configurable mean and standard deviation |
|
Poisson distribution |
\(y[i]\) is Poisson distributed with configurable mean |
|
Uniform distribution |
\(y[i]\) is uniformly distributed between two configurable bounds |
|
Gaussian |
\(y = y_{0}+\dfrac{A}{\sqrt{2\pi} \cdot \sigma} \cdot \exp\left(-\dfrac{1}{2} \cdot \left(\dfrac{x-x_{0}}{\sigma}\right)^2\right)\) |
|
Lorentzian |
\(y = y_{0}+\dfrac{A}{\sigma \cdot \pi} \cdot \dfrac{1}{1+\left(\dfrac{x-x_{0}}{\sigma}\right)^2}\) |
|
Voigt |
\(y = y_{0}+A \cdot \dfrac{\Re\left(\exp\left(-z^2\right) \cdot \erfc(-j \cdot z)\right)}{\sqrt{2\pi} \cdot \sigma}\) with \(z = \dfrac{x-x_{0}-j \cdot \sigma}{\sqrt{2} \cdot \sigma}\) |
|
Blackbody (Planck’s law) |
\(y = \dfrac{2 h c^2}{\lambda^5 \left(\exp\left(\dfrac{h c}{\lambda k T}\right)-1\right)}\) |
|
Sine |
\(y = y_{0}+A\sin\left(2\pi \cdot f \cdot x+\phi\right)\) |
|
Cosine |
\(y = y_{0}+A\cos\left(2\pi \cdot f \cdot x+\phi\right)\) |
|
Sawtooth |
\(y = y_{0}+A \left( 2 \left( f x + \frac{\phi}{2\pi} - \left\lfloor f x + \frac{\phi}{2\pi} + \frac{1}{2} \right\rfloor \right) \right)\) |
|
Triangle |
\(y = y_{0}+A \sawtooth\left(2 \pi f x + \phi, \text{width} = 0.5\right)\) |
|
Square |
\(y = y_0 + A \sgn\left( \sin\left( 2\pi f x + \phi \right) \right)\) |
|
Cardinal sine |
\(y = y_0 + A \sinc\left(2\pi f x + \phi\right)\) |
|
Linear chirp |
\(y = y_{0} + A \sin\left(\phi_{0} + 2\pi \left(f_{0}\, x + \frac{1}{2} c\, x^{2}\right)\right)\) |
|
Step |
\(y = y_{0}+A \left\{\begin{array}{ll}1 & \text{if } x > x_{0} \\ 0 & \text{otherwise}\end{array}\right.\) |
|
Exponential |
\(y = y_{0}+A \exp\left(B \cdot x\right)\) |
|
Logistic |
\(y = y_{0} + \dfrac{A}{1 + \exp\left(-k \left(x - x_{0}\right)\right)}\) |
|
Pulse |
\(y = y_{0}+A \left\{\begin{array}{ll}1 & \text{if } x_{0} < x < x_{1} \\ 0 & \text{otherwise}\end{array}\right.\) |
|
Step Pulse |
\(y = \left( \begin{cases} y_0 & \text{if } x < t_0 \\ y_0 + A \cdot \dfrac{x - t_0}{t_r} & \text{if } t_0 \leq x < t_0 + t_r \\ y_0 + A & \text{if } x \geq t_0 + t_r \end{cases} \right) + \mathcal{N}\left(0, \sigma_n\right)\)
\(t_0\) is the pulse start time,
\(t_r\) is the rise time,
\(\sigma_n\) is the noise amplitude
|
|
Square Pulse |
\(y(x) = \left(\begin{cases} y_0 & \text{if } x < t_0 \\ y_0 + A \cdot \dfrac{x - t_0}{t_r} & \text{if } t_0 \leq x < t_0 + t_r \\ y_0 + A & \text{if } t_0 + t_r \leq x < t_1 \\ y_0 + A - A \cdot \dfrac{x - t_1}{t_f} & \text{if } t_1 \leq x < t_1 + t_f \\ y_0 & \text{if } x \geq t_1 + t_f \end{cases} \right) + \mathcal{N}(0, \sigma_n)\)
\(t_0\) is the pulse start time,
\(t_r\) is the rise time,
\(t_f\) is the fall time,
\(t_1 = t_0 + t_r + d\) is the time at which the decay starts,
\(\sigma_n\) is the noise amplitude
the duration of the plateau \(d\) is computed as \(d = t_{\mathrm{FWHM}} - \dfrac{t_r + t_f}{2}\) from the full width at half maximum \(t_{\mathrm{FWHM}}\)
Warning
The duration of the plateau \(d\) should not be negative.
|
|
Polynomial |
\(y = y_{0}+A_{0}+A_{1} \cdot x+A_{2} \cdot x^2+\ldots+A_{n} \cdot x^n\) |
|
Custom |
Manual input of X and Y values |