Remote controlling#

DataLab may be controlled remotely using the XML-RPC protocol which is natively supported by Python (and many other languages). Remote controlling allows to access DataLab main features from a separate process.

Note

If you are looking for a lighweight alternative solution to remote control DataLab (i.e. without having to install the whole DataLab package and its dependencies on your environment), please have a look at the DataLab Simple Client package (pip install cdlclient).

From an IDE#

DataLab may be controlled remotely from an IDE (e.g. Spyder or any other IDE, or even a Jupyter Notebook) that runs a Python script. It allows to connect to a running DataLab instance, adds a signal and an image, and then runs calculations. This feature is exposed by the RemoteProxy class that is provided in module cdl.proxy.

From a third-party application#

DataLab may also be controlled remotely from a third-party application, for the same purpose.

If the third-party application is written in Python 3, it may directly use the RemoteProxy class as mentioned above. From another language, it is also achievable, but it requires to implement a XML-RPC client in this language using the same methods of proxy server as in the RemoteProxy class.

Data (signals and images) may also be exchanged between DataLab and the remote client application, in both directions.

The remote client application may be written in any language that supports XML-RPC. For example, it is possible to write a remote client application in Python, Java, C++, C#, etc. The remote client application may be a graphical application or a command line application.

The remote client application may be run on the same computer as DataLab or on a different computer. In the latter case, the remote client application must know the IP address of the computer running DataLab.

The remote client application may be run before or after DataLab. In the latter case, the remote client application must try to connect to DataLab until it succeeds.

Supported features#

Supported features are the following:

  • Switch to signal or image panel

  • Remove all signals and images

  • Save current session to a HDF5 file

  • Open HDF5 files into current session

  • Browse HDF5 file

  • Open a signal or an image from file

  • Add a signal

  • Add an image

  • Get object list

  • Run calculation with parameters

Note

The signal and image objects are described on this section: Internal data model.

Some examples are provided to help implementing such a communication between your application and DataLab:

  • See module: cdl.tests.remoteclient_app

  • See module: cdl.tests.remoteclient_unit

../../_images/remote_control_test.png

Screenshot of remote client application test (cdl.tests.remoteclient_app)#

Examples#

When using Python 3, you may directly use the RemoteProxy class as in examples cited above or below.

Here is an example in Python 3 of a script that connects to a running DataLab instance, adds a signal and an image, and then runs calculations (the cell structure of the script make it convenient to be used in Spyder IDE):

"""
Example of remote control of DataLab current session,
from a Python script running outside DataLab (e.g. in Spyder)

Created on Fri May 12 12:28:56 2023

@author: p.raybaut
"""

# %% Importing necessary modules

# NumPy for numerical array computations:
import numpy as np

# DataLab remote control client:
from cdl.proxy import RemoteProxy

# %% Connecting to DataLab current session

proxy = RemoteProxy()

# %% Executing commands in DataLab (...)

z = np.random.rand(20, 20)
proxy.add_image("toto", z)

# %% Executing commands in DataLab (...)

proxy.toggle_auto_refresh(False)  # Turning off auto-refresh
x = np.array([1.0, 2.0, 3.0])
y = np.array([4.0, 5.0, -1.0])
proxy.add_signal("toto", x, y)

# %% Executing commands in DataLab (...)

proxy.compute_derivative()
proxy.toggle_auto_refresh(True)  # Turning on auto-refresh

# %% Executing commands in DataLab (...)

proxy.set_current_panel("image")

# %% Executing a lot of commands without refreshing DataLab

z = np.random.rand(400, 400)
proxy.add_image("foobar", z)
with proxy.context_no_refresh():
    for _idx in range(100):
        proxy.compute_fft()

Here is a Python 2.7 reimplementation of this class:

# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.

"""
DataLab remote controlling class for Python 2.7
"""

import io
import os
import os.path as osp
import socket
import sys

import ConfigParser as cp
import numpy as np
from guidata.userconfig import get_config_dir
from xmlrpclib import Binary, ServerProxy


def array_to_rpcbinary(data):
    """Convert NumPy array to XML-RPC Binary object, with shape and dtype"""
    dbytes = io.BytesIO()
    np.save(dbytes, data, allow_pickle=False)
    return Binary(dbytes.getvalue())


def get_cdl_xmlrpc_port():
    """Return DataLab current XML-RPC port"""
    if sys.platform == "win32" and "HOME" in os.environ:
        os.environ.pop("HOME")  # Avoid getting old WinPython settings dir
    fname = osp.join(get_config_dir(), ".DataLab", "DataLab.ini")
    ini = cp.ConfigParser()
    ini.read(fname)
    try:
        return ini.get("main", "rpc_server_port")
    except (cp.NoSectionError, cp.NoOptionError):
        raise ConnectionRefusedError("DataLab has not yet been executed")


class RemoteClient(object):
    """Object representing a proxy/client to DataLab XML-RPC server"""

    def __init__(self):
        self.port = None
        self.serverproxy = None

    def connect(self, port=None):
        """Connect to DataLab XML-RPC server"""
        if port is None:
            port = get_cdl_xmlrpc_port()
        self.port = port
        url = "http://127.0.0.1:" + port
        self.serverproxy = ServerProxy(url, allow_none=True)
        try:
            self.get_version()
        except socket.error:
            raise ConnectionRefusedError("DataLab is currently not running")

    def get_version(self):
        """Return DataLab public version"""
        return self.serverproxy.get_version()

    def close_application(self):
        """Close DataLab application"""
        self.serverproxy.close_application()

    def raise_window(self):
        """Raise DataLab window"""
        self.serverproxy.raise_window()

    def get_current_panel(self):
        """Return current panel"""
        return self.serverproxy.get_current_panel()

    def set_current_panel(self, panel):
        """Switch to panel"""
        self.serverproxy.set_current_panel(panel)

    def reset_all(self):
        """Reset all application data"""
        self.serverproxy.reset_all()

    def toggle_auto_refresh(self, state):
        """Toggle auto refresh state"""
        self.serverproxy.toggle_auto_refresh(state)

    def toggle_show_titles(self, state):
        """Toggle show titles state"""
        self.serverproxy.toggle_show_titles(state)

    def save_to_h5_file(self, filename):
        """Save to a DataLab HDF5 file"""
        self.serverproxy.save_to_h5_file(filename)

    def open_h5_files(self, h5files, import_all, reset_all):
        """Open a DataLab HDF5 file or import from any other HDF5 file"""
        self.serverproxy.open_h5_files(h5files, import_all, reset_all)

    def import_h5_file(self, filename, reset_all):
        """Open DataLab HDF5 browser to Import HDF5 file"""
        self.serverproxy.import_h5_file(filename, reset_all)

    def load_from_files(self, filenames):
        """Open objects from files in current panel (signals/images)"""
        self.serverproxy.load_from_files(filenames)

    def add_signal(
        self, title, xdata, ydata, xunit=None, yunit=None, xlabel=None, ylabel=None
    ):
        """Add signal data to DataLab"""
        xbinary = array_to_rpcbinary(xdata)
        ybinary = array_to_rpcbinary(ydata)
        p = self.serverproxy
        return p.add_signal(title, xbinary, ybinary, xunit, yunit, xlabel, ylabel)

    def add_image(
        self,
        title,
        data,
        xunit=None,
        yunit=None,
        zunit=None,
        xlabel=None,
        ylabel=None,
        zlabel=None,
    ):
        """Add image data to DataLab"""
        zbinary = array_to_rpcbinary(data)
        p = self.serverproxy
        return p.add_image(title, zbinary, xunit, yunit, zunit, xlabel, ylabel, zlabel)

    def get_object_titles(self, panel=None):
        """Get object (signal/image) list for current panel"""
        return self.serverproxy.get_object_titles(panel)

    def get_object(self, nb_id_title=None, panel=None):
        """Get object (signal/image) by number, id or title"""
        return self.serverproxy.get_object(nb_id_title, panel)

    def get_object_uuids(self, panel=None):
        """Get object (signal/image) list for current panel"""
        return self.serverproxy.get_object_uuids(panel)


def test_remote_client():
    """DataLab Remote Client test"""
    cdl = RemoteClient()
    cdl.connect()
    data = np.array([[3, 4, 5], [7, 8, 0]], dtype=np.uint16)
    cdl.add_image("toto", data)


if __name__ == "__main__":
    test_remote_client()

Connection dialog#

The DataLab package also provides a connection dialog that may be used to connect to a running DataLab instance. It is exposed by the cdl.widgets.connection.ConnectionDialog class.

../../_images/connect_dialog.png

Screenshot of connection dialog (cdl.widgets.connection.ConnectionDialog)#

Example of use:

# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.

"""
DataLab Remote client connection dialog example
"""

# guitest: show,skip

from guidata.qthelpers import qt_app_context
from qtpy import QtWidgets as QW

from cdl.proxy import RemoteProxy
from cdl.widgets.connection import ConnectionDialog


def test_dialog():
    """Test connection dialog"""
    proxy = RemoteProxy(autoconnect=False)
    with qt_app_context():
        dlg = ConnectionDialog(proxy.connect)
        if dlg.exec():
            QW.QMessageBox.information(None, "Connection", "Successfully connected")
        else:
            QW.QMessageBox.critical(None, "Connection", "Connection failed")


if __name__ == "__main__":
    test_dialog()

Public API: remote client#

class cdl.core.remote.RemoteClient#

Object representing a proxy/client to DataLab XML-RPC server. This object is used to call DataLab functions from a Python script.

Examples

Here is a simple example of how to use RemoteClient in a Python script or in a Jupyter notebook:

>>> from cdl.core.remote import RemoteClient
>>> proxy = RemoteClient()
>>> proxy.connect()
Connecting to DataLab XML-RPC server...OK (port: 28867)
>>> proxy.get_version()
'1.0.0'
>>> proxy.add_signal("toto", np.array([1., 2., 3.]), np.array([4., 5., -1.]))
True
>>> proxy.get_object_titles()
['toto']
>>> proxy["toto"]
<cdl.core.model.signal.SignalObj at 0x7f7f1c0b4a90>
>>> proxy[1]
<cdl.core.model.signal.SignalObj at 0x7f7f1c0b4a90>
>>> proxy[1].data
array([1., 2., 3.])
connect(port: str | None = None, timeout: float | None = None, retries: int | None = None) None#

Try to connect to DataLab XML-RPC server.

Parameters:
  • port (str | None) – XML-RPC port to connect to. If not specified, the port is automatically retrieved from DataLab configuration.

  • timeout (float | None) – Timeout in seconds. Defaults to 5.0.

  • retries (int | None) – Number of retries. Defaults to 10.

Raises:
disconnect() None#

Disconnect from DataLab XML-RPC server.

is_connected() bool#

Return True if connected to DataLab XML-RPC server.

get_method_list() list[str]#

Return list of available methods.

add_signal(title: str, xdata: ndarray, ydata: ndarray, xunit: str | None = None, yunit: str | None = None, xlabel: str | None = None, ylabel: str | None = None) bool#

Add signal data to DataLab.

Parameters:
  • title (str) – Signal title

  • xdata (numpy.ndarray) – X data

  • ydata (numpy.ndarray) – Y data

  • xunit (str | None) – X unit. Defaults to None.

  • yunit (str | None) – Y unit. Defaults to None.

  • xlabel (str | None) – X label. Defaults to None.

  • ylabel (str | None) – Y label. Defaults to None.

Returns:

True if signal was added successfully, False otherwise

Return type:

bool

Raises:
add_image(title: str, data: ndarray, xunit: str | None = None, yunit: str | None = None, zunit: str | None = None, xlabel: str | None = None, ylabel: str | None = None, zlabel: str | None = None) bool#

Add image data to DataLab.

Parameters:
  • title (str) – Image title

  • data (numpy.ndarray) – Image data

  • xunit (str | None) – X unit. Defaults to None.

  • yunit (str | None) – Y unit. Defaults to None.

  • zunit (str | None) – Z unit. Defaults to None.

  • xlabel (str | None) – X label. Defaults to None.

  • ylabel (str | None) – Y label. Defaults to None.

  • zlabel (str | None) – Z label. Defaults to None.

Returns:

True if image was added successfully, False otherwise

Return type:

bool

Raises:

ValueError – Invalid data dtype

calc(name: str, param: DataSet | None = None) DataSet#

Call compute function name in current panel’s processor.

Parameters:
Returns:

Compute function result

Return type:

guidata.dataset.DataSet

get_object(nb_id_title: int | str | None = None, panel: str | None = None) SignalObj | ImageObj#

Get object (signal/image) from index.

Parameters:
  • nb_id_title – Object number, or object id, or object title. Defaults to None (current object).

  • panel – Panel name. Defaults to None (current panel).

Returns:

Object

Raises:

KeyError – if object not found

get_object_shapes(nb_id_title: int | str | None = None, panel: str | None = None) list#

Get plot item shapes associated to object (signal/image).

Parameters:
  • nb_id_title – Object number, or object id, or object title. Defaults to None (current object).

  • panel – Panel name. Defaults to None (current panel).

Returns:

List of plot item shapes

add_annotations_from_items(items: list, refresh_plot: bool = True, panel: str | None = None) None#

Add object annotations (annotation plot items).

Parameters:
  • items (list) – annotation plot items

  • refresh_plot (bool | None) – refresh plot. Defaults to True.

  • panel (str | None) – panel name (valid values: “signal”, “image”). If None, current panel is used.

add_object(obj: SignalObj | ImageObj) None#

Add object to DataLab.

Parameters:

obj (SignalObj | ImageObj) – Signal or image object

add_label_with_title(title: str | None = None, panel: str | None = None) None#

Add a label with object title on the associated plot

Parameters:
  • title (str | None) – Label title. Defaults to None. If None, the title is the object title.

  • panel (str | None) – panel name (valid values: “signal”, “image”). If None, current panel is used.

close_application() None#

Close DataLab application

context_no_refresh() Generator[None, None, None]#

Return a context manager to temporarily disable auto refresh.

Returns:

Context manager

Example

>>> with proxy.context_no_refresh():
...     proxy.add_image("image1", data1)
...     proxy.compute_fft()
...     proxy.compute_wiener()
...     proxy.compute_ifft()
...     # Auto refresh is disabled during the above operations
delete_metadata(refresh_plot: bool = True, keep_roi: bool = False) None#

Delete metadata of selected objects

Parameters:
  • refresh_plot – Refresh plot. Defaults to True.

  • keep_roi – Keep ROI. Defaults to False.

get_current_panel() str#

Return current panel name.

Returns:

Panel name (valid values: “signal”, “image”, “macro”))

Return type:

str

get_group_titles_with_object_infos() tuple[list[str], list[list[str]], list[list[str]]]#

Return groups titles and lists of inner objects uuids and titles.

Returns:

groups titles, lists of inner objects uuids and titles

Return type:

Tuple

get_object_titles(panel: str | None = None) list[str]#

Get object (signal/image) list for current panel. Objects are sorted by group number and object index in group.

Parameters:

panel – panel name (valid values: “signal”, “image”, “macro”). If None, current data panel is used (i.e. signal or image panel).

Returns:

List of object titles

Raises:

ValueError – if panel not found

get_object_uuids(panel: str | None = None) list[str]#

Get object (signal/image) uuid list for current panel. Objects are sorted by group number and object index in group.

Parameters:

panel (str | None) – panel name (valid values: “signal”, “image”). If None, current panel is used.

Returns:

list of object uuids

Return type:

list[str]

Raises:

ValueError – if panel not found

classmethod get_public_methods() list[str]#

Return all public methods of the class, except itself.

Returns:

List of public methods

Return type:

list[str]

get_sel_object_uuids(include_groups: bool = False) list[str]#

Return selected objects uuids.

Parameters:

include_groups – If True, also return objects from selected groups.

Returns:

List of selected objects uuids.

get_version() str#

Return DataLab public version.

Returns:

DataLab version

Return type:

str

import_h5_file(filename: str, reset_all: bool | None = None) None#

Open DataLab HDF5 browser to Import HDF5 file.

Parameters:
  • filename (str) – HDF5 file name

  • reset_all (bool | None) – Reset all application data. Defaults to None.

import_macro_from_file(filename: str) None#

Import macro from file

Parameters:

filename – Filename.

load_from_files(filenames: list[str]) None#

Open objects from files in current panel (signals/images).

Parameters:

filenames – list of file names

open_h5_files(h5files: list[str] | None = None, import_all: bool | None = None, reset_all: bool | None = None) None#

Open a DataLab HDF5 file or import from any other HDF5 file.

Parameters:
  • h5files (list[str] | None) – List of HDF5 files to open. Defaults to None.

  • import_all (bool | None) – Import all objects from HDF5 files. Defaults to None.

  • reset_all (bool | None) – Reset all application data. Defaults to None.

raise_window() None#

Raise DataLab window

reset_all() None#

Reset all application data

run_macro(number_or_title: int | str | None = None) None#

Run macro.

Parameters:

number_or_title – Macro number, or macro title. Defaults to None (current macro).

Raises:

ValueError – if macro not found

save_to_h5_file(filename: str) None#

Save to a DataLab HDF5 file.

Parameters:

filename (str) – HDF5 file name

select_groups(selection: list[int | str] | None = None, panel: str | None = None) None#

Select groups in current panel.

Parameters:
  • selection – List of group numbers (1 to N), or list of group uuids, or None to select all groups. Defaults to None.

  • panel (str | None) – panel name (valid values: “signal”, “image”). If None, current panel is used. Defaults to None.

select_objects(selection: list[int | str], panel: str | None = None) None#

Select objects in current panel.

Parameters:
  • selection – List of object numbers (1 to N) or uuids to select

  • panel – panel name (valid values: “signal”, “image”). If None, current panel is used. Defaults to None.

set_current_panel(panel: str) None#

Switch to panel.

Parameters:

panel (str) – Panel name (valid values: “signal”, “image”, “macro”))

stop_macro(number_or_title: int | str | None = None) None#

Stop macro.

Parameters:

number_or_title – Macro number, or macro title. Defaults to None (current macro).

Raises:

ValueError – if macro not found

toggle_auto_refresh(state: bool) None#

Toggle auto refresh state.

Parameters:

state (bool) – Auto refresh state

toggle_show_titles(state: bool) None#

Toggle show titles state.

Parameters:

state (bool) – Show titles state

Public API: additional methods#

The remote control class methods (either using the proxy or the remote client) may be completed with additional methods which are dynamically added at runtime. This mechanism allows to access the methods of the processors of DataLab (see cdl.core.gui.processor).

Signal processor#

When working with signals, the methods of cdl.core.gui.processor.signal.SignalProcessor may be accessed.

class cdl.core.gui.processor.signal.SignalProcessor(panel: SignalPanel | ImagePanel, plotwidget: PlotWidget)

Object handling signal processing: operations, processing, computing

compute_sum() None

Compute sum

compute_addition_constant(param: ConstantOperationParam | None = None) None

Compute sum with a constant

compute_average() None

Compute average

compute_product() None

Compute product

compute_product_constant(param: ConstantOperationParam | None = None) None

Compute product with a constant

compute_roi_extraction(param: ROIDataParam | None = None) None

Extract Region Of Interest (ROI) from data

compute_swap_axes() None

Swap data axes

compute_abs() None

Compute absolute value

compute_re() None

Compute real part

compute_im() None

Compute imaginary part

compute_astype(param: DataTypeSParam | None = None) None

Convert data type

compute_log10() None

Compute Log10

compute_exp() None

Compute Log10

compute_sqrt() None

Compute square root

compute_power(param: PowerParam | None = None) None

Compute power

compute_difference(obj2: SignalObj | None = None) None

Compute difference between two signals

compute_difference_constant(param: ConstantOperationParam | None = None) None

Compute difference with a constant

compute_quadratic_difference(obj2: SignalObj | None = None) None

Compute quadratic difference between two signals

compute_division(obj2: SignalObj | None = None) None

Compute division between two signals

compute_division_constant(param: ConstantOperationParam | None = None) None

Compute division by a constant

compute_peak_detection(param: PeakDetectionParam | None = None) None

Detect peaks from data

compute_reverse_x() None

Reverse X axis

compute_normalize(param: NormalizeParam | None = None) None

Normalize data

compute_derivative() None

Compute derivative

compute_integral() None

Compute integral

compute_calibration(param: XYCalibrateParam | None = None) None

Compute data linear calibration

compute_clip(param: ClipParam | None = None) None

Compute maximum data clipping

compute_offset_correction(param: ROI1DParam | None = None) None

Compute offset correction

compute_gaussian_filter(param: GaussianParam | None = None) None

Compute gaussian filter

compute_moving_average(param: MovingAverageParam | None = None) None

Compute moving average

compute_moving_median(param: MovingMedianParam | None = None) None

Compute moving median

compute_wiener() None

Compute Wiener filter

compute_lowpass(param: LowPassFilterParam | None = None) None

Compute high-pass filter

compute_highpass(param: HighPassFilterParam | None = None) None

Compute high-pass filter

compute_bandpass(param: BandPassFilterParam | None = None) None

Compute band-pass filter

compute_bandstop(param: BandStopFilterParam | None = None) None

Compute band-stop filter

compute_fft(param: FFTParam | None = None) None

Compute iFFT

compute_ifft(param: FFTParam | None = None) None

Compute FFT

compute_magnitude_spectrum(param: SpectrumParam | None = None) None

Compute magnitude spectrum

compute_phase_spectrum() None

Compute phase spectrum

compute_psd(param: SpectrumParam | None = None) None

Compute power spectral density

compute_interpolation(obj2: SignalObj | None = None, param: InterpolationParam | None = None)

Compute interpolation

compute_resampling(param: ResamplingParam | None = None)

Compute resampling

compute_detrending(param: DetrendingParam | None = None)

Compute detrending

compute_convolution(obj2: SignalObj | None = None) None

Compute convolution

compute_windowing(param: WindowingParam | None = None) None

Compute windowing

compute_fit(name, fitdlgfunc)

Compute fitting curve

compute_polyfit(param: PolynomialFitParam | None = None) None

Compute polynomial fitting curve

compute_multigaussianfit() None

Compute multi-Gaussian fitting curve

compute_fwhm(param: FWHMParam | None = None) dict[str, ResultShape]

Compute FWHM

compute_fw1e2() dict[str, ResultShape]

Compute FW at 1/e²

compute_stats() dict[str, ResultProperties]

Compute data statistics

compute_histogram(param: HistogramParam | None = None) dict[str, ResultShape]

Compute histogram

compute_contrast() dict[str, ResultProperties]

Compute contrast

compute_x_at_minmax() dict[str, ResultProperties]

Compute x at min/max

compute_sampling_rate_period() dict[str, ResultProperties]

Compute sampling rate and period (mean and std)

compute_bandwidth_3db() None

Compute bandwidth

compute_dynamic_parameters(param: DynamicParam | None = None) dict[str, ResultProperties]

Compute Dynamic Parameters (ENOB, SINAD, THD, SFDR, SNR)

Image processor#

When working with images, the methods of cdl.core.gui.processor.image.ImageProcessor may be accessed.

class cdl.core.gui.processor.image.ImageProcessor(panel: SignalPanel | ImagePanel, plotwidget: PlotWidget)

Object handling image processing: operations, processing, computing

compute_normalize(param: NormalizeParam | None = None) None

Normalize data

compute_sum() None

Compute sum

compute_addition_constant(param: ConstantOperationParam | None = None) None

Compute sum with a constant

compute_average() None

Compute average

compute_product() None

Compute product

compute_product_constant(param: ConstantOperationParam | None = None) None

Compute product with a constant

compute_logp1(param: LogP1Param | None = None) None

Compute base 10 logarithm

compute_rotate(param: RotateParam | None = None) None

Rotate data arbitrarily

compute_rotate90() None

Rotate data 90°

compute_rotate270() None

Rotate data 270°

compute_fliph() None

Flip data horizontally

compute_flipv() None

Flip data vertically

distribute_on_grid(param: GridParam | None = None) None

Distribute images on a grid

reset_positions() None

Reset image positions

compute_resize(param: ResizeParam | None = None) None

Resize image

compute_binning(param: BinningParam | None = None) None

Binning image

compute_roi_extraction(param: ROIDataParam | None = None) None

Extract Region Of Interest (ROI) from data

compute_line_profile(param: LineProfileParam | None = None) None

Compute profile along a vertical or horizontal line

compute_segment_profile(param: SegmentProfileParam | None = None)

Compute profile along a segment

compute_average_profile(param: AverageProfileParam | None = None) None

Compute average profile

compute_radial_profile(param: RadialProfileParam | None = None) None

Compute radial profile

compute_histogram(param: HistogramParam | None = None) None

Compute histogram

compute_swap_axes() None

Swap data axes

compute_abs() None

Compute absolute value

compute_re() None

Compute real part

compute_im() None

Compute imaginary part

compute_astype(param: DataTypeIParam | None = None) None

Convert data type

compute_log10() None

Compute Log10

compute_exp() None

Compute Log10

compute_difference(obj2: ImageObj | None = None) None

Compute difference between two images

compute_difference_constant(param: ConstantOperationParam | None = None) None

Compute difference with a constant

compute_quadratic_difference(obj2: ImageObj | None = None) None

Compute quadratic difference between two images

compute_division(obj2: ImageObj | None = None) None

Compute division between two images

compute_division_constant(param: ConstantOperationParam | None = None) None

Compute division by a constant

compute_flatfield(obj2: ImageObj | None = None, param: FlatFieldParam | None = None) None

Compute flat field correction

compute_calibration(param: ZCalibrateParam | None = None) None

Compute data linear calibration

compute_clip(param: ClipParam | None = None) None

Compute maximum data clipping

compute_offset_correction(param: ROI2DParam | None = None) None

Compute offset correction

compute_gaussian_filter(param: GaussianParam | None = None) None

Compute gaussian filter

compute_moving_average(param: MovingAverageParam | None = None) None

Compute moving average

compute_moving_median(param: MovingMedianParam | None = None) None

Compute moving median

compute_wiener() None

Compute Wiener filter

compute_fft(param: FFTParam | None = None) None

Compute FFT

compute_ifft(param: FFTParam | None = None) None

Compute iFFT

compute_magnitude_spectrum(param: SpectrumParam | None = None) None

Compute magnitude spectrum

compute_phase_spectrum() None

Compute phase spectrum

compute_psd(param: SpectrumParam | None = None) None

Compute Power Spectral Density (PSD)

compute_butterworth(param: ButterworthParam | None = None) None

Compute Butterworth filter

compute_threshold(param: ThresholdParam | None = None) None

Compute parametric threshold

compute_threshold_isodata() None

Compute threshold using Isodata algorithm

compute_threshold_li() None

Compute threshold using Li algorithm

compute_threshold_mean() None

Compute threshold using Mean algorithm

compute_threshold_minimum() None

Compute threshold using Minimum algorithm

compute_threshold_otsu() None

Compute threshold using Otsu algorithm

compute_threshold_triangle() None

Compute threshold using Triangle algorithm

compute_threshold_yen() None

Compute threshold using Yen algorithm

compute_all_threshold() None

Compute all threshold algorithms

compute_adjust_gamma(param: AdjustGammaParam | None = None) None

Compute gamma correction

compute_adjust_log(param: AdjustLogParam | None = None) None

Compute log correction

compute_adjust_sigmoid(param: AdjustSigmoidParam | None = None) None

Compute sigmoid correction

compute_rescale_intensity(param: RescaleIntensityParam | None = None) None

Rescale image intensity levels

compute_equalize_hist(param: EqualizeHistParam | None = None) None

Histogram equalization

compute_equalize_adapthist(param: EqualizeAdaptHistParam | None = None) None

Adaptive histogram equalization

compute_denoise_tv(param: DenoiseTVParam | None = None) None

Compute Total Variation denoising

compute_denoise_bilateral(param: DenoiseBilateralParam | None = None) None

Compute bilateral filter denoising

compute_denoise_wavelet(param: DenoiseWaveletParam | None = None) None

Compute Wavelet denoising

compute_denoise_tophat(param: MorphologyParam | None = None) None

Denoise using White Top-Hat

compute_all_denoise(params: list | None = None) None

Compute all denoising filters

compute_white_tophat(param: MorphologyParam | None = None) None

Compute White Top-Hat

compute_black_tophat(param: MorphologyParam | None = None) None

Compute Black Top-Hat

compute_erosion(param: MorphologyParam | None = None) None

Compute Erosion

compute_dilation(param: MorphologyParam | None = None) None

Compute Dilation

compute_opening(param: MorphologyParam | None = None) None

Compute morphological opening

compute_closing(param: MorphologyParam | None = None) None

Compute morphological closing

compute_all_morphology(param: MorphologyParam | None = None) None

Compute all morphology filters

compute_canny(param: CannyParam | None = None) None

Compute Canny filter

compute_roberts() None

Compute Roberts filter

compute_prewitt() None

Compute Prewitt filter

compute_prewitt_h() None

Compute Prewitt filter (horizontal)

compute_prewitt_v() None

Compute Prewitt filter (vertical)

compute_sobel() None

Compute Sobel filter

compute_sobel_h() None

Compute Sobel filter (horizontal)

compute_sobel_v() None

Compute Sobel filter (vertical)

compute_scharr() None

Compute Scharr filter

compute_scharr_h() None

Compute Scharr filter (horizontal)

compute_scharr_v() None

Compute Scharr filter (vertical)

compute_farid() None

Compute Farid filter

compute_farid_h() None

Compute Farid filter (horizontal)

compute_farid_v() None

Compute Farid filter (vertical)

compute_laplace() None

Compute Laplace filter

compute_all_edges() None

Compute all edges

compute_stats() dict[str, ResultProperties]

Compute data statistics

compute_centroid() dict[str, ResultShape]

Compute image centroid

compute_enclosing_circle() dict[str, ResultShape]

Compute minimum enclosing circle

compute_peak_detection(param: Peak2DDetectionParam | None = None) dict[str, ResultShape]

Compute 2D peak detection

compute_contour_shape(param: ContourShapeParam | None = None) dict[str, ResultShape]

Compute contour shape fit

compute_hough_circle_peaks(param: HoughCircleParam | None = None) dict[str, ResultShape]

Compute peak detection based on a circle Hough transform

compute_blob_dog(param: BlobDOGParam | None = None) dict[str, ResultShape]

Compute blob detection using Difference of Gaussian method

compute_blob_doh(param: BlobDOHParam | None = None) dict[str, ResultShape]

Compute blob detection using Determinant of Hessian method

compute_blob_log(param: BlobLOGParam | None = None) dict[str, ResultShape]

Compute blob detection using Laplacian of Gaussian method

compute_blob_opencv(param: BlobOpenCVParam | None = None) dict[str, ResultShape]

Compute blob detection using OpenCV