Remote controlling#

DataLab may be controlled remotely using the XML-RPC protocol which is natively supported by Python (and many other languages). Remote controlling allows to access DataLab main features from a separate process.

Note

If you are looking for a lighweight alternative solution to remote control DataLab (i.e. without having to install the whole DataLab package and its dependencies on your environment), please have a look at the DataLab Simple Client package (pip install cdlclient).

From an IDE#

DataLab may be controlled remotely from an IDE (e.g. Spyder or any other IDE, or even a Jupyter Notebook) that runs a Python script. It allows to connect to a running DataLab instance, adds a signal and an image, and then runs calculations. This feature is exposed by the RemoteProxy class that is provided in module cdl.proxy.

From a third-party application#

DataLab may also be controlled remotely from a third-party application, for the same purpose.

If the third-party application is written in Python 3, it may directly use the RemoteProxy class as mentioned above. From another language, it is also achievable, but it requires to implement a XML-RPC client in this language using the same methods of proxy server as in the RemoteProxy class.

Data (signals and images) may also be exchanged between DataLab and the remote client application, in both directions.

The remote client application may be written in any language that supports XML-RPC. For example, it is possible to write a remote client application in Python, Java, C++, C#, etc. The remote client application may be a graphical application or a command line application.

The remote client application may be run on the same computer as DataLab or on a different computer. In the latter case, the remote client application must know the IP address of the computer running DataLab.

The remote client application may be run before or after DataLab. In the latter case, the remote client application must try to connect to DataLab until it succeeds.

Supported features#

Supported features are the following:

  • Switch to signal or image panel

  • Remove all signals and images

  • Save current session to a HDF5 file

  • Open HDF5 files into current session

  • Browse HDF5 file

  • Open a signal or an image from file

  • Add a signal

  • Add an image

  • Get object list

  • Run calculation with parameters

Note

The signal and image objects are described on this section: Internal data model.

Some examples are provided to help implementing such a communication between your application and DataLab:

  • See module: cdl.tests.remoteclient_app

  • See module: cdl.tests.remoteclient_unit

../../_images/remote_control_test.png

Screenshot of remote client application test (cdl.tests.remoteclient_app)#

Examples#

When using Python 3, you may directly use the RemoteProxy class as in examples cited above or below.

Here is an example in Python 3 of a script that connects to a running DataLab instance, adds a signal and an image, and then runs calculations (the cell structure of the script make it convenient to be used in Spyder IDE):

"""
Example of remote control of DataLab current session,
from a Python script running outside DataLab (e.g. in Spyder)

Created on Fri May 12 12:28:56 2023

@author: p.raybaut
"""

# %% Importing necessary modules

# NumPy for numerical array computations:
import numpy as np

# DataLab remote control client:
from cdl.proxy import RemoteProxy

# %% Connecting to DataLab current session

proxy = RemoteProxy()

# %% Executing commands in DataLab (...)

z = np.random.rand(20, 20)
proxy.add_image("toto", z)

# %% Executing commands in DataLab (...)

proxy.toggle_auto_refresh(False)  # Turning off auto-refresh
x = np.array([1.0, 2.0, 3.0])
y = np.array([4.0, 5.0, -1.0])
proxy.add_signal("toto", x, y)

# %% Executing commands in DataLab (...)

proxy.compute_derivative()
proxy.toggle_auto_refresh(True)  # Turning on auto-refresh

# %% Executing commands in DataLab (...)

proxy.set_current_panel("image")

# %% Executing a lot of commands without refreshing DataLab

z = np.random.rand(400, 400)
proxy.add_image("foobar", z)
with proxy.context_no_refresh():
    for _idx in range(100):
        proxy.compute_fft()

Here is a Python 2.7 reimplementation of this class:

# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.

"""
DataLab remote controlling class for Python 2.7
"""

import io
import os
import os.path as osp
import socket
import sys

import ConfigParser as cp
import numpy as np
from guidata.userconfig import get_config_dir
from xmlrpclib import Binary, ServerProxy


def array_to_rpcbinary(data):
    """Convert NumPy array to XML-RPC Binary object, with shape and dtype"""
    dbytes = io.BytesIO()
    np.save(dbytes, data, allow_pickle=False)
    return Binary(dbytes.getvalue())


def get_cdl_xmlrpc_port():
    """Return DataLab current XML-RPC port"""
    if sys.platform == "win32" and "HOME" in os.environ:
        os.environ.pop("HOME")  # Avoid getting old WinPython settings dir
    fname = osp.join(get_config_dir(), ".DataLab", "DataLab.ini")
    ini = cp.ConfigParser()
    ini.read(fname)
    try:
        return ini.get("main", "rpc_server_port")
    except (cp.NoSectionError, cp.NoOptionError):
        raise ConnectionRefusedError("DataLab has not yet been executed")


class RemoteClient(object):
    """Object representing a proxy/client to DataLab XML-RPC server"""

    def __init__(self):
        self.port = None
        self.serverproxy = None

    def connect(self, port=None):
        """Connect to DataLab XML-RPC server"""
        if port is None:
            port = get_cdl_xmlrpc_port()
        self.port = port
        url = "http://127.0.0.1:" + port
        self.serverproxy = ServerProxy(url, allow_none=True)
        try:
            self.get_version()
        except socket.error:
            raise ConnectionRefusedError("DataLab is currently not running")

    def get_version(self):
        """Return DataLab public version"""
        return self.serverproxy.get_version()

    def close_application(self):
        """Close DataLab application"""
        self.serverproxy.close_application()

    def raise_window(self):
        """Raise DataLab window"""
        self.serverproxy.raise_window()

    def get_current_panel(self):
        """Return current panel"""
        return self.serverproxy.get_current_panel()

    def set_current_panel(self, panel):
        """Switch to panel"""
        self.serverproxy.set_current_panel(panel)

    def reset_all(self):
        """Reset all application data"""
        self.serverproxy.reset_all()

    def toggle_auto_refresh(self, state):
        """Toggle auto refresh state"""
        self.serverproxy.toggle_auto_refresh(state)

    def toggle_show_titles(self, state):
        """Toggle show titles state"""
        self.serverproxy.toggle_show_titles(state)

    def save_to_h5_file(self, filename):
        """Save to a DataLab HDF5 file"""
        self.serverproxy.save_to_h5_file(filename)

    def open_h5_files(self, h5files, import_all, reset_all):
        """Open a DataLab HDF5 file or import from any other HDF5 file"""
        self.serverproxy.open_h5_files(h5files, import_all, reset_all)

    def import_h5_file(self, filename, reset_all):
        """Open DataLab HDF5 browser to Import HDF5 file"""
        self.serverproxy.import_h5_file(filename, reset_all)

    def load_from_files(self, filenames):
        """Open objects from files in current panel (signals/images)"""
        self.serverproxy.load_from_files(filenames)

    def add_signal(
        self, title, xdata, ydata, xunit=None, yunit=None, xlabel=None, ylabel=None
    ):
        """Add signal data to DataLab"""
        xbinary = array_to_rpcbinary(xdata)
        ybinary = array_to_rpcbinary(ydata)
        p = self.serverproxy
        return p.add_signal(title, xbinary, ybinary, xunit, yunit, xlabel, ylabel)

    def add_image(
        self,
        title,
        data,
        xunit=None,
        yunit=None,
        zunit=None,
        xlabel=None,
        ylabel=None,
        zlabel=None,
    ):
        """Add image data to DataLab"""
        zbinary = array_to_rpcbinary(data)
        p = self.serverproxy
        return p.add_image(title, zbinary, xunit, yunit, zunit, xlabel, ylabel, zlabel)

    def get_object_titles(self, panel=None):
        """Get object (signal/image) list for current panel"""
        return self.serverproxy.get_object_titles(panel)

    def get_object(self, nb_id_title=None, panel=None):
        """Get object (signal/image) by number, id or title"""
        return self.serverproxy.get_object(nb_id_title, panel)

    def get_object_uuids(self, panel=None):
        """Get object (signal/image) list for current panel"""
        return self.serverproxy.get_object_uuids(panel)


def test_remote_client():
    """DataLab Remote Client test"""
    cdl = RemoteClient()
    cdl.connect()
    data = np.array([[3, 4, 5], [7, 8, 0]], dtype=np.uint16)
    cdl.add_image("toto", data)


if __name__ == "__main__":
    test_remote_client()

Connection dialog#

The DataLab package also provides a connection dialog that may be used to connect to a running DataLab instance. It is exposed by the cdl.widgets.connection.ConnectionDialog class.

../../_images/connect_dialog.png

Screenshot of connection dialog (cdl.widgets.connection.ConnectionDialog)#

Example of use:

# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.

"""
DataLab Remote client connection dialog example
"""

# guitest: show,skip

from guidata.qthelpers import qt_app_context
from qtpy import QtWidgets as QW

from cdl.proxy import RemoteProxy
from cdl.widgets.connection import ConnectionDialog


def test_dialog():
    """Test connection dialog"""
    proxy = RemoteProxy(autoconnect=False)
    with qt_app_context():
        dlg = ConnectionDialog(proxy.connect)
        if dlg.exec():
            QW.QMessageBox.information(None, "Connection", "Successfully connected")
        else:
            QW.QMessageBox.critical(None, "Connection", "Connection failed")


if __name__ == "__main__":
    test_dialog()

Public API: remote client#

class cdl.core.remote.RemoteClient[source]#

Object representing a proxy/client to DataLab XML-RPC server. This object is used to call DataLab functions from a Python script.

Examples

Here is a simple example of how to use RemoteClient in a Python script or in a Jupyter notebook:

>>> from cdl.core.remote import RemoteClient
>>> proxy = RemoteClient()
>>> proxy.connect()
Connecting to DataLab XML-RPC server...OK (port: 28867)
>>> proxy.get_version()
'1.0.0'
>>> proxy.add_signal("toto", np.array([1., 2., 3.]), np.array([4., 5., -1.]))
True
>>> proxy.get_object_titles()
['toto']
>>> proxy["toto"]
<cdl.core.model.signal.SignalObj at 0x7f7f1c0b4a90>
>>> proxy[1]
<cdl.core.model.signal.SignalObj at 0x7f7f1c0b4a90>
>>> proxy[1].data
array([1., 2., 3.])
connect(port: str | None = None, timeout: float | None = None, retries: int | None = None) None[source]#

Try to connect to DataLab XML-RPC server.

Parameters:
  • port (str | None) – XML-RPC port to connect to. If not specified, the port is automatically retrieved from DataLab configuration.

  • timeout (float | None) – Timeout in seconds. Defaults to 5.0.

  • retries (int | None) – Number of retries. Defaults to 10.

Raises:
disconnect() None[source]#

Disconnect from DataLab XML-RPC server.

is_connected() bool[source]#

Return True if connected to DataLab XML-RPC server.

get_method_list() list[str][source]#

Return list of available methods.

add_signal(title: str, xdata: ndarray, ydata: ndarray, xunit: str | None = None, yunit: str | None = None, xlabel: str | None = None, ylabel: str | None = None) bool[source]#

Add signal data to DataLab.

Parameters:
  • title (str) – Signal title

  • xdata (numpy.ndarray) – X data

  • ydata (numpy.ndarray) – Y data

  • xunit (str | None) – X unit. Defaults to None.

  • yunit (str | None) – Y unit. Defaults to None.

  • xlabel (str | None) – X label. Defaults to None.

  • ylabel (str | None) – Y label. Defaults to None.

Returns:

True if signal was added successfully, False otherwise

Return type:

bool

Raises:
add_image(title: str, data: ndarray, xunit: str | None = None, yunit: str | None = None, zunit: str | None = None, xlabel: str | None = None, ylabel: str | None = None, zlabel: str | None = None) bool[source]#

Add image data to DataLab.

Parameters:
  • title (str) – Image title

  • data (numpy.ndarray) – Image data

  • xunit (str | None) – X unit. Defaults to None.

  • yunit (str | None) – Y unit. Defaults to None.

  • zunit (str | None) – Z unit. Defaults to None.

  • xlabel (str | None) – X label. Defaults to None.

  • ylabel (str | None) – Y label. Defaults to None.

  • zlabel (str | None) – Z label. Defaults to None.

Returns:

True if image was added successfully, False otherwise

Return type:

bool

Raises:

ValueError – Invalid data dtype

calc(name: str, param: DataSet | None = None) None[source]#

Call compute function name in current panel’s processor.

Parameters:
  • name – Compute function name

  • param – Compute function parameter. Defaults to None.

Raises:

ValueError – unknown function

get_object(nb_id_title: int | str | None = None, panel: str | None = None) SignalObj | ImageObj[source]#

Get object (signal/image) from index.

Parameters:
  • nb_id_title – Object number, or object id, or object title. Defaults to None (current object).

  • panel – Panel name. Defaults to None (current panel).

Returns:

Object

Raises:

KeyError – if object not found

get_object_shapes(nb_id_title: int | str | None = None, panel: str | None = None) list[source]#

Get plot item shapes associated to object (signal/image).

Parameters:
  • nb_id_title – Object number, or object id, or object title. Defaults to None (current object).

  • panel – Panel name. Defaults to None (current panel).

Returns:

List of plot item shapes

add_annotations_from_items(items: list, refresh_plot: bool = True, panel: str | None = None) None[source]#

Add object annotations (annotation plot items).

Parameters:
  • items (list) – annotation plot items

  • refresh_plot (bool | None) – refresh plot. Defaults to True.

  • panel (str | None) – panel name (valid values: “signal”, “image”). If None, current panel is used.

add_object(obj: SignalObj | ImageObj) None[source]#

Add object to DataLab.

Parameters:

obj (SignalObj | ImageObj) – Signal or image object

add_label_with_title(title: str | None = None, panel: str | None = None) None#

Add a label with object title on the associated plot

Parameters:
  • title (str | None) – Label title. Defaults to None. If None, the title is the object title.

  • panel (str | None) – panel name (valid values: “signal”, “image”). If None, current panel is used.

close_application() None#

Close DataLab application

context_no_refresh() Generator[None, None, None]#

Return a context manager to temporarily disable auto refresh.

Returns:

Context manager

Example

>>> with proxy.context_no_refresh():
...     proxy.add_image("image1", data1)
...     proxy.compute_fft()
...     proxy.compute_wiener()
...     proxy.compute_ifft()
...     # Auto refresh is disabled during the above operations
delete_metadata(refresh_plot: bool = True, keep_roi: bool = False) None#

Delete metadata of selected objects

Parameters:
  • refresh_plot – Refresh plot. Defaults to True.

  • keep_roi – Keep ROI. Defaults to False.

get_current_panel() str#

Return current panel name.

Returns:

Panel name (valid values: “signal”, “image”, “macro”))

Return type:

str

get_group_titles_with_object_infos() tuple[list[str], list[list[str]], list[list[str]]]#

Return groups titles and lists of inner objects uuids and titles.

Returns:

groups titles, lists of inner objects uuids and titles

Return type:

Tuple

get_object_titles(panel: str | None = None) list[str]#

Get object (signal/image) list for current panel. Objects are sorted by group number and object index in group.

Parameters:

panel – panel name (valid values: “signal”, “image”, “macro”). If None, current data panel is used (i.e. signal or image panel).

Returns:

List of object titles

Raises:

ValueError – if panel not found

get_object_uuids(panel: str | None = None) list[str]#

Get object (signal/image) uuid list for current panel. Objects are sorted by group number and object index in group.

Parameters:

panel (str | None) – panel name (valid values: “signal”, “image”). If None, current panel is used.

Returns:

list of object uuids

Return type:

list[str]

Raises:

ValueError – if panel not found

classmethod get_public_methods() list[str]#

Return all public methods of the class, except itself.

Returns:

List of public methods

Return type:

list[str]

get_sel_object_uuids(include_groups: bool = False) list[str]#

Return selected objects uuids.

Parameters:

include_groups – If True, also return objects from selected groups.

Returns:

List of selected objects uuids.

get_version() str#

Return DataLab public version.

Returns:

DataLab version

Return type:

str

import_h5_file(filename: str, reset_all: bool | None = None) None#

Open DataLab HDF5 browser to Import HDF5 file.

Parameters:
  • filename (str) – HDF5 file name

  • reset_all (bool | None) – Reset all application data. Defaults to None.

import_macro_from_file(filename: str) None#

Import macro from file

Parameters:

filename – Filename.

load_from_files(filenames: list[str]) None#

Open objects from files in current panel (signals/images).

Parameters:

filenames – list of file names

open_h5_files(h5files: list[str] | None = None, import_all: bool | None = None, reset_all: bool | None = None) None#

Open a DataLab HDF5 file or import from any other HDF5 file.

Parameters:
  • h5files (list[str] | None) – List of HDF5 files to open. Defaults to None.

  • import_all (bool | None) – Import all objects from HDF5 files. Defaults to None.

  • reset_all (bool | None) – Reset all application data. Defaults to None.

raise_window() None#

Raise DataLab window

reset_all() None#

Reset all application data

run_macro(number_or_title: int | str | None = None) None#

Run macro.

Parameters:

number_or_title – Macro number, or macro title. Defaults to None (current macro).

Raises:

ValueError – if macro not found

save_to_h5_file(filename: str) None#

Save to a DataLab HDF5 file.

Parameters:

filename (str) – HDF5 file name

select_groups(selection: list[int | str] | None = None, panel: str | None = None) None#

Select groups in current panel.

Parameters:
  • selection – List of group numbers (1 to N), or list of group uuids, or None to select all groups. Defaults to None.

  • panel (str | None) – panel name (valid values: “signal”, “image”). If None, current panel is used. Defaults to None.

select_objects(selection: list[int | str], panel: str | None = None) None#

Select objects in current panel.

Parameters:
  • selection – List of object numbers (1 to N) or uuids to select

  • panel – panel name (valid values: “signal”, “image”). If None, current panel is used. Defaults to None.

set_current_panel(panel: str) None#

Switch to panel.

Parameters:

panel (str) – Panel name (valid values: “signal”, “image”, “macro”))

stop_macro(number_or_title: int | str | None = None) None#

Stop macro.

Parameters:

number_or_title – Macro number, or macro title. Defaults to None (current macro).

Raises:

ValueError – if macro not found

toggle_auto_refresh(state: bool) None#

Toggle auto refresh state.

Parameters:

state (bool) – Auto refresh state

toggle_show_titles(state: bool) None#

Toggle show titles state.

Parameters:

state (bool) – Show titles state

Public API: additional methods#

The remote control class methods (either using the proxy or the remote client) may be completed with additional methods which are dynamically added at runtime. This mechanism allows to access the methods of the processors of DataLab (see cdl.core.gui.processor).

Signal processor#

When working with signals, the methods of cdl.core.gui.processor.signal.SignalProcessor may be accessed.

class cdl.core.gui.processor.signal.SignalProcessor(panel: SignalPanel | ImagePanel, plotwidget: PlotWidget)[source]

Object handling signal processing: operations, processing, analysis

compute_sum() None[source]

Compute sum with cdl.computation.signal.compute_addition()

compute_addition_constant(param: ConstantParam | None = None) None[source]

Compute sum with a constant with cdl.computation.signal.compute_addition_constant()

compute_average() None[source]

Compute average with cdl.computation.signal.compute_addition() and divide by the number of signals

compute_product() None[source]

Compute product with cdl.computation.signal.compute_product()

compute_product_constant(param: ConstantParam | None = None) None[source]

Compute product with a constant with cdl.computation.signal.compute_product_constant()

compute_roi_extraction(param: ROIDataParam | None = None) None[source]

Extract Region Of Interest (ROI) from data with:

compute_swap_axes() None[source]

Swap data axes with cdl.computation.signal.compute_swap_axes()

compute_abs() None[source]

Compute absolute value with cdl.computation.signal.compute_abs()

compute_re() None[source]

Compute real part with cdl.computation.signal.compute_re()

compute_im() None[source]

Compute imaginary part with cdl.computation.signal.compute_im()

compute_astype(param: DataTypeSParam | None = None) None[source]

Convert data type with cdl.computation.signal.compute_astype()

compute_log10() None[source]

Compute Log10 with cdl.computation.signal.compute_log10()

compute_exp() None[source]

Compute Log10 with cdl.computation.signal.compute_exp()

compute_sqrt() None[source]

Compute square root with cdl.computation.signal.compute_sqrt()

compute_power(param: PowerParam | None = None) None[source]

Compute power with cdl.computation.signal.compute_power()

compute_arithmetic(obj2: SignalObj | None = None, param: ArithmeticParam | None = None) None[source]

Compute arithmetic operation between two signals with cdl.computation.signal.compute_arithmetic()

compute_difference(obj2: SignalObj | None = None) None[source]

Compute difference between two signals with cdl.computation.signal.compute_difference()

compute_difference_constant(param: ConstantParam | None = None) None[source]

Compute difference with a constant with cdl.computation.signal.compute_difference_constant()

compute_quadratic_difference(obj2: SignalObj | None = None) None[source]

Compute quadratic difference between two signals with cdl.computation.signal.compute_quadratic_difference()

compute_division(obj2: SignalObj | None = None) None[source]

Compute division between two signals with cdl.computation.signal.compute_division()

compute_division_constant(param: ConstantParam | None = None) None[source]

Compute division by a constant with cdl.computation.signal.compute_division_constant()

compute_peak_detection(param: PeakDetectionParam | None = None) None[source]

Detect peaks from data with cdl.computation.signal.compute_peak_detection()

compute_reverse_x() None[source]

Reverse X axis with cdl.computation.signal.compute_reverse_x()

compute_normalize(param: NormalizeParam | None = None) None[source]

Normalize data with cdl.computation.signal.compute_normalize()

compute_derivative() None[source]

Compute derivative with cdl.computation.signal.compute_derivative()

compute_integral() None[source]

Compute integral with cdl.computation.signal.compute_integral()

compute_calibration(param: XYCalibrateParam | None = None) None[source]

Compute data linear calibration with cdl.computation.signal.compute_calibration()

compute_clip(param: ClipParam | None = None) None[source]

Compute maximum data clipping with cdl.computation.signal.compute_clip()

compute_offset_correction(param: ROI1DParam | None = None) None[source]

Compute offset correction with cdl.computation.signal.compute_offset_correction()

compute_gaussian_filter(param: GaussianParam | None = None) None[source]

Compute gaussian filter with cdl.computation.signal.compute_gaussian_filter()

compute_moving_average(param: MovingAverageParam | None = None) None[source]

Compute moving average with cdl.computation.signal.compute_moving_average()

compute_moving_median(param: MovingMedianParam | None = None) None[source]

Compute moving median with cdl.computation.signal.compute_moving_median()

compute_wiener() None[source]

Compute Wiener filter with cdl.computation.signal.compute_wiener()

compute_lowpass(param: LowPassFilterParam | None = None) None[source]

Compute high-pass filter with cdl.computation.signal.compute_filter()

compute_highpass(param: HighPassFilterParam | None = None) None[source]

Compute high-pass filter with cdl.computation.signal.compute_filter()

compute_bandpass(param: BandPassFilterParam | None = None) None[source]

Compute band-pass filter with cdl.computation.signal.compute_filter()

compute_bandstop(param: BandStopFilterParam | None = None) None[source]

Compute band-stop filter with cdl.computation.signal.compute_filter()

compute_fft(param: FFTParam | None = None) None[source]

Compute FFT with cdl.computation.signal.compute_fft()

compute_ifft(param: FFTParam | None = None) None[source]

Compute iFFT with cdl.computation.signal.compute_ifft()

compute_magnitude_spectrum(param: SpectrumParam | None = None) None[source]

Compute magnitude spectrum with cdl.computation.signal.compute_magnitude_spectrum()

compute_phase_spectrum() None[source]

Compute phase spectrum with cdl.computation.signal.compute_phase_spectrum()

compute_psd(param: SpectrumParam | None = None) None[source]

Compute power spectral density with cdl.computation.signal.compute_psd()

compute_interpolation(obj2: SignalObj | None = None, param: InterpolationParam | None = None)[source]

Compute interpolation with cdl.computation.signal.compute_interpolation()

compute_resampling(param: ResamplingParam | None = None)[source]

Compute resampling with cdl.computation.signal.compute_resampling()

compute_detrending(param: DetrendingParam | None = None)[source]

Compute detrending with cdl.computation.signal.compute_detrending()

compute_convolution(obj2: SignalObj | None = None) None[source]

Compute convolution with cdl.computation.signal.compute_convolution()

compute_windowing(param: WindowingParam | None = None) None[source]

Compute windowing with cdl.computation.signal.compute_windowing()

compute_polyfit(param: PolynomialFitParam | None = None) None[source]

Compute polynomial fitting curve

compute_fit(title: str, fitdlgfunc: Callable) None[source]

Compute fitting curve using an interactive dialog

Parameters:
  • title – Title of the dialog

  • fitdlgfunc – Fitting dialog function

compute_multigaussianfit() None[source]

Compute multi-Gaussian fitting curve using an interactive dialog

compute_fwhm(param: FWHMParam | None = None) dict[str, ResultShape][source]

Compute FWHM with cdl.computation.signal.compute_fwhm()

compute_fw1e2() dict[str, ResultShape][source]

Compute FW at 1/e² with cdl.computation.signal.compute_fw1e2()

compute_stats() dict[str, ResultProperties][source]

Compute data statistics with cdl.computation.signal.compute_stats()

compute_histogram(param: HistogramParam | None = None) dict[str, ResultShape][source]

Compute histogram with cdl.computation.signal.compute_histogram()

compute_contrast() dict[str, ResultProperties][source]

Compute contrast with cdl.computation.signal.compute_contrast()

compute_x_at_minmax() dict[str, ResultProperties][source]

Compute x at min/max with cdl.computation.signal.compute_x_at_minmax()

compute_sampling_rate_period() dict[str, ResultProperties][source]

Compute sampling rate and period (mean and std) with cdl.computation.signal.compute_sampling_rate_period()

compute_bandwidth_3db() None[source]

Compute bandwidth at -3dB with cdl.computation.signal.compute_bandwidth_3db()

compute_dynamic_parameters(param: DynamicParam | None = None) dict[str, ResultProperties][source]

Compute Dynamic Parameters (ENOB, SINAD, THD, SFDR, SNR) with cdl.computation.signal.compute_dynamic_parameters()

Image processor#

When working with images, the methods of cdl.core.gui.processor.image.ImageProcessor may be accessed.

class cdl.core.gui.processor.image.ImageProcessor(panel: SignalPanel | ImagePanel, plotwidget: PlotWidget)[source]

Object handling image processing: operations, processing, analysis

compute_normalize(param: NormalizeParam | None = None) None[source]

Normalize data with cdl.computation.image.compute_normalize()

compute_sum() None[source]

Compute sum with cdl.computation.image.compute_addition()

compute_addition_constant(param: ConstantParam | None = None) None[source]

Compute sum with a constant using cdl.computation.image.compute_addition_constant()

compute_average() None[source]

Compute average with cdl.computation.image.compute_addition() and dividing by the number of images

compute_product() None[source]

Compute product with cdl.computation.image.compute_product()

compute_product_constant(param: ConstantParam | None = None) None[source]

Compute product with a constant using cdl.computation.image.compute_product_constant()

compute_logp1(param: LogP1Param | None = None) None[source]

Compute base 10 logarithm using cdl.computation.image.compute_logp1()

compute_rotate(param: RotateParam | None = None) None[source]

Rotate data arbitrarily using cdl.computation.image.compute_rotate()

compute_rotate90() None[source]

Rotate data 90° with cdl.computation.image.compute_rotate90()

compute_rotate270() None[source]

Rotate data 270° with cdl.computation.image.compute_rotate270()

compute_fliph() None[source]

Flip data horizontally using cdl.computation.image.compute_fliph()

compute_flipv() None[source]

Flip data vertically with cdl.computation.image.compute_flipv()

distribute_on_grid(param: GridParam | None = None) None[source]

Distribute images on a grid

reset_positions() None[source]

Reset image positions

compute_resize(param: ResizeParam | None = None) None[source]

Resize image with cdl.computation.image.compute_resize()

compute_binning(param: BinningParam | None = None) None[source]

Binning image with cdl.computation.image.compute_binning()

compute_roi_extraction(param: ROIDataParam | None = None) None[source]

Extract Region Of Interest (ROI) from data with:

compute_line_profile(param: LineProfileParam | None = None) None[source]

Compute profile along a vertical or horizontal line with cdl.computation.image.compute_line_profile()

compute_segment_profile(param: SegmentProfileParam | None = None)[source]

Compute profile along a segment with cdl.computation.image.compute_segment_profile()

compute_average_profile(param: AverageProfileParam | None = None) None[source]

Compute average profile with cdl.computation.image.compute_average_profile()

compute_radial_profile(param: RadialProfileParam | None = None) None[source]

Compute radial profile with cdl.computation.image.compute_radial_profile()

compute_histogram(param: HistogramParam | None = None) None[source]

Compute histogram with cdl.computation.image.compute_histogram()

compute_swap_axes() None[source]

Swap data axes with cdl.computation.image.compute_swap_axes()

compute_abs() None[source]

Compute absolute value with cdl.computation.image.compute_abs()

compute_re() None[source]

Compute real part with cdl.computation.image.compute_re()

compute_im() None[source]

Compute imaginary part with cdl.computation.image.compute_im()

compute_astype(param: DataTypeIParam | None = None) None[source]

Convert data type with cdl.computation.image.compute_astype()

compute_log10() None[source]

Compute Log10 with cdl.computation.image.compute_log10()

compute_exp() None[source]

Compute Log10 with cdl.computation.image.compute_exp()

compute_arithmetic(obj2: ImageObj | None = None, param: ArithmeticParam | None = None) None[source]

Compute arithmetic operation between two images with cdl.computation.image.compute_arithmetic()

compute_difference(obj2: ImageObj | None = None) None[source]

Compute difference between two images with cdl.computation.image.compute_difference()

compute_difference_constant(param: ConstantParam | None = None) None[source]

Compute difference with a constant with cdl.computation.image.compute_difference_constant()

compute_quadratic_difference(obj2: ImageObj | None = None) None[source]

Compute quadratic difference between two images with cdl.computation.image.compute_quadratic_difference()

compute_division(obj2: ImageObj | None = None) None[source]

Compute division between two images with cdl.computation.image.compute_division()

compute_division_constant(param: ConstantParam | None = None) None[source]

Compute division by a constant with cdl.computation.image.compute_division_constant()

compute_flatfield(obj2: ImageObj | None = None, param: FlatFieldParam | None = None) None[source]

Compute flat field correction with cdl.computation.image.compute_flatfield()

compute_calibration(param: ZCalibrateParam | None = None) None[source]

Compute data linear calibration with cdl.computation.image.compute_calibration()

compute_clip(param: ClipParam | None = None) None[source]

Compute maximum data clipping with cdl.computation.image.compute_clip()

compute_offset_correction(param: ROI2DParam | None = None) None[source]

Compute offset correction with cdl.computation.image.compute_offset_correction()

compute_gaussian_filter(param: GaussianParam | None = None) None[source]

Compute gaussian filter with cdl.computation.image.compute_gaussian_filter()

compute_moving_average(param: MovingAverageParam | None = None) None[source]

Compute moving average with cdl.computation.image.compute_moving_average()

compute_moving_median(param: MovingMedianParam | None = None) None[source]

Compute moving median with cdl.computation.image.compute_moving_median()

compute_wiener() None[source]

Compute Wiener filter with cdl.computation.image.compute_wiener()

compute_fft(param: FFTParam | None = None) None[source]

Compute FFT with cdl.computation.image.compute_fft()

compute_ifft(param: FFTParam | None = None) None[source]

Compute iFFT with cdl.computation.image.compute_ifft()

compute_magnitude_spectrum(param: SpectrumParam | None = None) None[source]

Compute magnitude spectrum with cdl.computation.image.compute_magnitude_spectrum()

compute_phase_spectrum() None[source]

Compute phase spectrum with cdl.computation.image.compute_phase_spectrum()

compute_psd(param: SpectrumParam | None = None) None[source]

Compute Power Spectral Density (PSD) with cdl.computation.image.compute_psd()

compute_butterworth(param: ButterworthParam | None = None) None[source]

Compute Butterworth filter with cdl.computation.image.compute_butterworth()

compute_threshold(param: ThresholdParam | None = None) None[source]

Compute parametric threshold with cdl.computation.image.threshold.compute_threshold()

compute_threshold_isodata() None[source]

Compute threshold using Isodata algorithm with cdl.computation.image.threshold.compute_threshold_isodata()

compute_threshold_li() None[source]

Compute threshold using Li algorithm with cdl.computation.image.threshold.compute_threshold_li()

compute_threshold_mean() None[source]

Compute threshold using Mean algorithm with cdl.computation.image.threshold.compute_threshold_mean()

compute_threshold_minimum() None[source]

Compute threshold using Minimum algorithm with cdl.computation.image.threshold.compute_threshold_minimum()

compute_threshold_otsu() None[source]

Compute threshold using Otsu algorithm with cdl.computation.image.threshold.compute_threshold_otsu()

compute_threshold_triangle() None[source]

Compute threshold using Triangle algorithm with cdl.computation.image.threshold.compute_threshold_triangle()

compute_threshold_yen() None[source]

Compute threshold using Yen algorithm with cdl.computation.image.threshold.compute_threshold_yen()

compute_all_threshold() None[source]

Compute all threshold algorithms using the following functions:

compute_adjust_gamma(param: AdjustGammaParam | None = None) None[source]

Compute gamma correction with cdl.computation.image.exposure.compute_adjust_gamma()

compute_adjust_log(param: AdjustLogParam | None = None) None[source]

Compute log correction with cdl.computation.image.exposure.compute_adjust_log()

compute_adjust_sigmoid(param: AdjustSigmoidParam | None = None) None[source]

Compute sigmoid correction with cdl.computation.image.exposure.compute_adjust_sigmoid()

compute_rescale_intensity(param: RescaleIntensityParam | None = None) None[source]

Rescale image intensity levels with :py:func`cdl.computation.image.exposure.compute_rescale_intensity`

compute_equalize_hist(param: EqualizeHistParam | None = None) None[source]

Histogram equalization with cdl.computation.image.exposure.compute_equalize_hist()

compute_equalize_adapthist(param: EqualizeAdaptHistParam | None = None) None[source]

Adaptive histogram equalization with cdl.computation.image.exposure.compute_equalize_adapthist()

compute_denoise_tv(param: DenoiseTVParam | None = None) None[source]

Compute Total Variation denoising with cdl.computation.image.restoration.compute_denoise_tv()

compute_denoise_bilateral(param: DenoiseBilateralParam | None = None) None[source]

Compute bilateral filter denoising with cdl.computation.image.restoration.compute_denoise_bilateral()

compute_denoise_wavelet(param: DenoiseWaveletParam | None = None) None[source]

Compute Wavelet denoising with cdl.computation.image.restoration.compute_denoise_wavelet()

compute_denoise_tophat(param: MorphologyParam | None = None) None[source]

Denoise using White Top-Hat with cdl.computation.image.restoration.compute_denoise_tophat()

compute_all_denoise(params: list | None = None) None[source]

Compute all denoising filters using the following functions:

compute_white_tophat(param: MorphologyParam | None = None) None[source]

Compute White Top-Hat with cdl.computation.image.morphology.compute_white_tophat()

compute_black_tophat(param: MorphologyParam | None = None) None[source]

Compute Black Top-Hat with cdl.computation.image.morphology.compute_black_tophat()

compute_erosion(param: MorphologyParam | None = None) None[source]

Compute Erosion with cdl.computation.image.morphology.compute_erosion()

compute_dilation(param: MorphologyParam | None = None) None[source]

Compute Dilation with cdl.computation.image.morphology.compute_dilation()

compute_opening(param: MorphologyParam | None = None) None[source]

Compute morphological opening with cdl.computation.image.morphology.compute_opening()

compute_closing(param: MorphologyParam | None = None) None[source]

Compute morphological closing with cdl.computation.image.morphology.compute_closing()

compute_all_morphology(param: MorphologyParam | None = None) None[source]

Compute all morphology filters using the following functions:

compute_canny(param: CannyParam | None = None) None[source]

Compute Canny filter with cdl.computation.image.edges.compute_canny()

compute_roberts() None[source]

Compute Roberts filter with cdl.computation.image.edges.compute_roberts()

compute_prewitt() None[source]

Compute Prewitt filter with cdl.computation.image.edges.compute_prewitt()

compute_prewitt_h() None[source]

Compute Prewitt filter (horizontal) with cdl.computation.image.edges.compute_prewitt_h()

compute_prewitt_v() None[source]

Compute Prewitt filter (vertical) with cdl.computation.image.edges.compute_prewitt_v()

compute_sobel() None[source]

Compute Sobel filter with cdl.computation.image.edges.compute_sobel()

compute_sobel_h() None[source]

Compute Sobel filter (horizontal) with cdl.computation.image.edges.compute_sobel_h()

compute_sobel_v() None[source]

Compute Sobel filter (vertical) with cdl.computation.image.edges.compute_sobel_v()

compute_scharr() None[source]

Compute Scharr filter with cdl.computation.image.edges.compute_scharr()

compute_scharr_h() None[source]

Compute Scharr filter (horizontal) with cdl.computation.image.edges.compute_scharr_h()

compute_scharr_v() None[source]

Compute Scharr filter (vertical) with cdl.computation.image.edges.compute_scharr_v()

compute_farid() None[source]

Compute Farid filter with cdl.computation.image.edges.compute_farid()

compute_farid_h() None[source]

Compute Farid filter (horizontal) with cdl.computation.image.edges.compute_farid_h()

compute_farid_v() None[source]

Compute Farid filter (vertical) with cdl.computation.image.edges.compute_farid_v()

compute_laplace() None[source]

Compute Laplace filter with cdl.computation.image.edges.compute_laplace()

compute_all_edges() None[source]

Compute all edges filters using the following functions:

compute_stats() dict[str, ResultProperties][source]

Compute data statistics with cdl.computation.image.compute_stats()

compute_centroid() dict[str, ResultShape][source]

Compute image centroid with cdl.computation.image.compute_centroid()

compute_enclosing_circle() dict[str, ResultShape][source]

Compute minimum enclosing circle with cdl.computation.image.compute_enclosing_circle()

compute_peak_detection(param: Peak2DDetectionParam | None = None) dict[str, ResultShape][source]

Compute 2D peak detection with cdl.computation.image.compute_peak_detection()

compute_contour_shape(param: ContourShapeParam | None = None) dict[str, ResultShape][source]

Compute contour shape fit with cdl.computation.image.detection.compute_contour_shape()

compute_hough_circle_peaks(param: HoughCircleParam | None = None) dict[str, ResultShape][source]

Compute peak detection based on a circle Hough transform with cdl.computation.image.compute_hough_circle_peaks()

compute_blob_dog(param: BlobDOGParam | None = None) dict[str, ResultShape][source]

Compute blob detection using Difference of Gaussian method with cdl.computation.image.detection.compute_blob_dog()

compute_blob_doh(param: BlobDOHParam | None = None) dict[str, ResultShape][source]

Compute blob detection using Determinant of Hessian method with cdl.computation.image.detection.compute_blob_doh()

compute_blob_log(param: BlobLOGParam | None = None) dict[str, ResultShape][source]

Compute blob detection using Laplacian of Gaussian method with cdl.computation.image.detection.compute_blob_log()

compute_blob_opencv(param: BlobOpenCVParam | None = None) dict[str, ResultShape][source]

Compute blob detection using OpenCV with cdl.computation.image.detection.compute_blob_opencv()