Processor#
The cdl.core.gui.processor
package provides the processor objects
for signals and images.
Processor objects are the bridge between the computation modules
(in cdl.computation
) and the GUI modules (in cdl.core.gui
).
They are used to call the computation functions and to update the GUI from inside
the data panel objects.
When implementing a processing feature in DataLab, the steps are usually the following:
Add an action in the
cdl.core.gui.actionhandler
module to trigger the processing feature from the GUI (e.g. a menu item or a toolbar button).Implement the computation function in the
cdl.computation
module (that would eventually call the algorithm from thecdl.algorithms
module).Implement the processor object method in this package to call the computation function and eventually update the GUI.
The processor objects are organized in submodules according to their purpose.
The following submodules are available:
cdl.core.gui.processor.base
: Common processing featurescdl.core.gui.processor.signal
: Signal processing featurescdl.core.gui.processor.image
: Image processing features
Common features#
- class cdl.core.gui.processor.base.Worker[source]#
Multiprocessing worker, to run long-running tasks in a separate process
- static terminate_pool(wait: bool = False) None [source]#
Terminate multiprocessing pool.
- Parameters:
wait – wait for all tasks to finish. Defaults to False.
- run(func: Callable, args: tuple[Any]) None [source]#
Run computation.
- Parameters:
func – function to run
args – arguments
- cdl.core.gui.processor.base.is_pairwise_mode() bool [source]#
Return True if operation mode is pairwise.
- Returns:
True if operation mode is pairwise
- Return type:
- class cdl.core.gui.processor.base.BaseProcessor(panel: SignalPanel | ImagePanel, plotwidget: PlotWidget)[source]#
Object handling data processing: operations, processing, analysis.
- Parameters:
panel – panel
plotwidget – plot widget
- set_process_isolation_enabled(enabled: bool) None [source]#
Set process isolation enabled.
- Parameters:
enabled – enabled
- has_param_defaults(paramclass: type[DataSet]) bool [source]#
Return True if parameter defaults are available.
- Parameters:
paramclass – parameter class
- Returns:
True if parameter defaults are available
- Return type:
- update_param_defaults(param: DataSet) None [source]#
Update parameter defaults.
- Parameters:
param – parameters
- init_param(param: DataSet, paramclass: type[DataSet], title: str, comment: str | None = None) tuple[bool, DataSet] [source]#
Initialize processing parameters.
- Parameters:
param – parameter
paramclass – parameter class
title – title
comment – comment
- Returns:
Tuple (edit, param) where edit is True if parameters have been edited, False otherwise.
- compute_11(func: Callable, param: DataSet | None = None, paramclass: DataSet | None = None, title: str | None = None, comment: str | None = None, edit: bool | None = None) None [source]#
Compute 11 function: 1 object in → 1 object out.
- Parameters:
func – function
param – parameter
paramclass – parameter class
title – title
comment – comment
edit – edit parameters
- compute_1n(funcs: list[Callable] | Callable, params: list | None = None, title: str | None = None, edit: bool | None = None) None [source]#
Compute 1n function: 1 object in → n objects out.
- Parameters:
funcs – list of functions
params – list of parameters
title – title
edit – edit parameters
- handle_output(compout: CompOut, context: str, progress: QW.QProgressDialog) SignalObj | ImageObj | ResultShape | ResultProperties | None [source]#
Handle computation output: if error, display error message, if warning, display warning message.
- Parameters:
compout – computation output
context – context (e.g. “Computing: Gaussian filter”)
progress – progress dialog
- Returns:
- a signal or image object, or a result shape object,
or None if error
- Return type:
Output object
- compute_10(func: Callable, param: DataSet | None = None, paramclass: DataSet | None = None, title: str | None = None, comment: str | None = None, edit: bool | None = None) dict[str, ResultShape | ResultProperties] [source]#
Compute 10 function: 1 object in → 0 object out (the result of this method is stored in original object’s metadata).
- Parameters:
func – function to execute
param – parameters. Defaults to None.
paramclass – parameters class. Defaults to None.
title – title of progress bar. Defaults to None.
comment – comment. Defaults to None.
edit – if True, edit parameters. Defaults to None.
- Returns:
- object uuid, values: ResultShape or
ResultProperties objects)
- Return type:
Dictionary of results (keys
- compute_n1(name: str, func: Callable, param: DataSet | None = None, paramclass: DataSet | None = None, title: str | None = None, comment: str | None = None, func_objs: Callable | None = None, edit: bool | None = None) None [source]#
Compute n1 function: N(>=2) objects in → 1 object out.
- Parameters:
name – name of function
func – function to execute
param – parameters. Defaults to None.
paramclass – parameters class. Defaults to None.
title – title of progress bar. Defaults to None.
comment – comment. Defaults to None.
func_objs – function to execute on objects. Defaults to None.
edit – if True, edit parameters. Defaults to None.
- compute_n1n(obj2: Obj | list[Obj] | None, obj2_name: str, func: Callable, param: gds.DataSet | None = None, paramclass: gds.DataSet | None = None, title: str | None = None, comment: str | None = None, edit: bool | None = None) None [source]#
Compute n1n function: N(>=1) objects + 1 object in → N objects out.
Note
In pairwise mode, the function is executed on each pair of objects, so the logic is different:
N(>=1) objects + N objects in → N objects out
In other words, the n1n function in single operand mode becomes a nnn function in pairwise mode.
Examples: subtract, divide
- Parameters:
obj2 – second object (or list of objects in case of pairwise operation mode)
obj2_name – name of second object
func – function to execute
param – parameters. Defaults to None.
paramclass – parameters class. Defaults to None.
title – title of progress bar. Defaults to None.
comment – comment. Defaults to None.
edit – if True, edit parameters. Defaults to None.
- abstractmethod compute_arithmetic(obj2: Obj | None = None, param: ArithmeticParam | None = None) None [source]#
Compute arithmetic operation
- abstractmethod compute_normalize(param: NormalizeParam | None = None) None [source]#
Normalize data
- abstractmethod compute_difference(obj2: Obj | list[Obj] | None = None) None [source]#
Compute difference
- abstractmethod compute_quadratic_difference(obj2: Obj | list[Obj] | None = None) None [source]#
Compute quadratic difference
- abstractmethod compute_division(obj2: Obj | list[Obj] | None = None) None [source]#
Compute division
- abstractmethod compute_clip(param: ClipParam | None = None) None [source]#
Compute maximum data clipping
- abstractmethod compute_gaussian_filter(param: GaussianParam | None = None) None [source]#
Compute gaussian filter
- abstractmethod compute_moving_average(param: MovingAverageParam | None = None) None [source]#
Compute moving average
- abstractmethod compute_moving_median(param: MovingMedianParam | None = None) None [source]#
Compute moving median
- abstractmethod compute_addition_constant(param: ConstantParam) None [source]#
Compute sum with a constant
- abstractmethod compute_difference_constant(param: ConstantParam) None [source]#
Compute difference with a constant
- abstractmethod compute_product_constant(param: ConstantParam) None [source]#
Compute product with a constant
- abstractmethod compute_division_constant(param: ConstantParam) None [source]#
Compute division by a constant
- compute_roi_extraction(roi: TypeROI | None = None) None [source]#
Extract Region Of Interest (ROI) from data with:
cdl.computation.image.extract_single_roi()
for single ROIcdl.computation.image.extract_multiple_roi()
for multiple ROIs
- edit_regions_of_interest(extract: bool = False) TypeROI | None [source]#
Define Region Of Interest (ROI).
- Parameters:
extract – If True, ROI is extracted from data. Defaults to False.
- Returns:
ROI object or None if ROI dialog has been canceled.
- abstractmethod compute_stats() dict[str, ResultShape] [source]#
Compute data statistics
Signal processing features#
- class cdl.core.gui.processor.signal.SignalProcessor(panel: SignalPanel | ImagePanel, plotwidget: PlotWidget)[source]#
Object handling signal processing: operations, processing, analysis
- compute_sum() None [source]#
Compute sum with
cdl.computation.signal.compute_addition()
- compute_addition_constant(param: ConstantParam | None = None) None [source]#
Compute sum with a constant with
cdl.computation.signal.compute_addition_constant()
- compute_average() None [source]#
Compute average with
cdl.computation.signal.compute_addition()
and divide by the number of signals
- compute_product() None [source]#
Compute product with
cdl.computation.signal.compute_product()
- compute_product_constant(param: ConstantParam | None = None) None [source]#
Compute product with a constant with
cdl.computation.signal.compute_product_constant()
- compute_swap_axes() None [source]#
Swap data axes with
cdl.computation.signal.compute_swap_axes()
- compute_abs() None [source]#
Compute absolute value with
cdl.computation.signal.compute_abs()
- compute_re() None [source]#
Compute real part with
cdl.computation.signal.compute_re()
- compute_im() None [source]#
Compute imaginary part with
cdl.computation.signal.compute_im()
- compute_astype(param: DataTypeSParam | None = None) None [source]#
Convert data type with
cdl.computation.signal.compute_astype()
- compute_log10() None [source]#
Compute Log10 with
cdl.computation.signal.compute_log10()
- compute_exp() None [source]#
Compute Log10 with
cdl.computation.signal.compute_exp()
- compute_sqrt() None [source]#
Compute square root with
cdl.computation.signal.compute_sqrt()
- compute_power(param: PowerParam | None = None) None [source]#
Compute power with
cdl.computation.signal.compute_power()
- compute_arithmetic(obj2: SignalObj | None = None, param: ArithmeticParam | None = None) None [source]#
Compute arithmetic operation between two signals with
cdl.computation.signal.compute_arithmetic()
- compute_difference(obj2: SignalObj | list[SignalObj] | None = None) None [source]#
Compute difference between two signals with
cdl.computation.signal.compute_difference()
- compute_difference_constant(param: ConstantParam | None = None) None [source]#
Compute difference with a constant with
cdl.computation.signal.compute_difference_constant()
- compute_quadratic_difference(obj2: SignalObj | list[SignalObj] | None = None) None [source]#
Compute quadratic difference between two signals with
cdl.computation.signal.compute_quadratic_difference()
- compute_division(obj2: SignalObj | list[SignalObj] | None = None) None [source]#
Compute division between two signals with
cdl.computation.signal.compute_division()
- compute_division_constant(param: ConstantParam | None = None) None [source]#
Compute division by a constant with
cdl.computation.signal.compute_division_constant()
- compute_peak_detection(param: PeakDetectionParam | None = None) None [source]#
Detect peaks from data with
cdl.computation.signal.compute_peak_detection()
- compute_reverse_x() None [source]#
Reverse X axis with
cdl.computation.signal.compute_reverse_x()
- compute_cartesian2polar(param: AngleUnitParam | None = None) None [source]#
Convert cartesian to polar coordinates with
cdl.computation.signal.compute_cartesian2polar()
- compute_polar2cartesian(param: AngleUnitParam | None = None) None [source]#
Convert polar to cartesian coordinates with
cdl.computation.signal.compute_polar2cartesian()
.
- compute_normalize(param: NormalizeParam | None = None) None [source]#
Normalize data with
cdl.computation.signal.compute_normalize()
- compute_derivative() None [source]#
Compute derivative with
cdl.computation.signal.compute_derivative()
- compute_integral() None [source]#
Compute integral with
cdl.computation.signal.compute_integral()
- compute_calibration(param: XYCalibrateParam | None = None) None [source]#
Compute data linear calibration with
cdl.computation.signal.compute_calibration()
- compute_clip(param: ClipParam | None = None) None [source]#
Compute maximum data clipping with
cdl.computation.signal.compute_clip()
- compute_offset_correction(param: ROI1DParam | None = None) None [source]#
Compute offset correction with
cdl.computation.signal.compute_offset_correction()
- compute_gaussian_filter(param: GaussianParam | None = None) None [source]#
Compute gaussian filter with
cdl.computation.signal.compute_gaussian_filter()
- compute_moving_average(param: MovingAverageParam | None = None) None [source]#
Compute moving average with
cdl.computation.signal.compute_moving_average()
- compute_moving_median(param: MovingMedianParam | None = None) None [source]#
Compute moving median with
cdl.computation.signal.compute_moving_median()
- compute_wiener() None [source]#
Compute Wiener filter with
cdl.computation.signal.compute_wiener()
- compute_lowpass(param: LowPassFilterParam | None = None) None [source]#
Compute high-pass filter with
cdl.computation.signal.compute_filter()
- compute_highpass(param: HighPassFilterParam | None = None) None [source]#
Compute high-pass filter with
cdl.computation.signal.compute_filter()
- compute_bandpass(param: BandPassFilterParam | None = None) None [source]#
Compute band-pass filter with
cdl.computation.signal.compute_filter()
- compute_bandstop(param: BandStopFilterParam | None = None) None [source]#
Compute band-stop filter with
cdl.computation.signal.compute_filter()
- compute_fft(param: FFTParam | None = None) None [source]#
Compute FFT with
cdl.computation.signal.compute_fft()
- compute_ifft(param: FFTParam | None = None) None [source]#
Compute iFFT with
cdl.computation.signal.compute_ifft()
- compute_magnitude_spectrum(param: SpectrumParam | None = None) None [source]#
Compute magnitude spectrum with
cdl.computation.signal.compute_magnitude_spectrum()
- compute_phase_spectrum() None [source]#
Compute phase spectrum with
cdl.computation.signal.compute_phase_spectrum()
- compute_psd(param: SpectrumParam | None = None) None [source]#
Compute power spectral density with
cdl.computation.signal.compute_psd()
- compute_interpolation(obj2: SignalObj | None = None, param: InterpolationParam | None = None)[source]#
Compute interpolation with
cdl.computation.signal.compute_interpolation()
- compute_resampling(param: ResamplingParam | None = None)[source]#
Compute resampling with
cdl.computation.signal.compute_resampling()
- compute_detrending(param: DetrendingParam | None = None)[source]#
Compute detrending with
cdl.computation.signal.compute_detrending()
- compute_convolution(obj2: SignalObj | None = None) None [source]#
Compute convolution with
cdl.computation.signal.compute_convolution()
- compute_windowing(param: WindowingParam | None = None) None [source]#
Compute windowing with
cdl.computation.signal.compute_windowing()
- compute_allan_variance(param: AllanVarianceParam | None = None) None [source]#
Compute Allan variance with
cdl.computation.signal.compute_allan_variance()
- compute_allan_deviation(param: AllanVarianceParam | None = None) None [source]#
Compute Allan deviation with
cdl.computation.signal.compute_allan_deviation()
- compute_overlapping_allan_variance(param: AllanVarianceParam | None = None) None [source]#
Compute overlapping Allan variance with
cdl.computation.signal.compute_overlapping_allan_variance()
- compute_modified_allan_variance(param: AllanVarianceParam | None = None) None [source]#
Compute modified Allan variance with
cdl.computation.signal.compute_modified_allan_variance()
- compute_hadamard_variance(param: AllanVarianceParam | None = None) None [source]#
Compute Hadamard variance with
cdl.computation.signal.compute_hadamard_variance()
- compute_total_variance(param: AllanVarianceParam | None = None) None [source]#
Compute total variance with
cdl.computation.signal.compute_total_variance()
- compute_time_deviation(param: AllanVarianceParam | None = None) None [source]#
Compute time deviation with
cdl.computation.signal.compute_time_deviation()
- compute_all_stability(param: AllanVarianceParam | None = None) None [source]#
Compute all stability analysis features using the following functions:
- compute_polyfit(param: PolynomialFitParam | None = None) None [source]#
Compute polynomial fitting curve
- compute_fit(title: str, fitdlgfunc: Callable) None [source]#
Compute fitting curve using an interactive dialog
- Parameters:
title – Title of the dialog
fitdlgfunc – Fitting dialog function
- compute_multigaussianfit() None [source]#
Compute multi-Gaussian fitting curve using an interactive dialog
- compute_fwhm(param: FWHMParam | None = None) dict[str, ResultShape] [source]#
Compute FWHM with
cdl.computation.signal.compute_fwhm()
- compute_fw1e2() dict[str, ResultShape] [source]#
Compute FW at 1/e² with
cdl.computation.signal.compute_fw1e2()
- compute_stats() dict[str, ResultProperties] [source]#
Compute data statistics with
cdl.computation.signal.compute_stats()
- compute_histogram(param: HistogramParam | None = None) dict[str, ResultShape] [source]#
Compute histogram with
cdl.computation.signal.compute_histogram()
- compute_contrast() dict[str, ResultProperties] [source]#
Compute contrast with
cdl.computation.signal.compute_contrast()
- compute_x_at_minmax() dict[str, ResultProperties] [source]#
Compute x at min/max with
cdl.computation.signal.compute_x_at_minmax()
- compute_x_at_y(param: FindAbscissaParam | None = None) dict[str, ResultProperties] [source]#
Compute x at y with
cdl.computation.signal.compute_x_at_y()
.
- compute_sampling_rate_period() dict[str, ResultProperties] [source]#
Compute sampling rate and period (mean and std) with
cdl.computation.signal.compute_sampling_rate_period()
- compute_bandwidth_3db() None [source]#
Compute bandwidth at -3dB with
cdl.computation.signal.compute_bandwidth_3db()
- compute_dynamic_parameters(param: DynamicParam | None = None) dict[str, ResultProperties] [source]#
Compute Dynamic Parameters (ENOB, SINAD, THD, SFDR, SNR) with
cdl.computation.signal.compute_dynamic_parameters()
Image processing features#
- class cdl.core.gui.processor.image.ImageProcessor(panel: SignalPanel | ImagePanel, plotwidget: PlotWidget)[source]#
Object handling image processing: operations, processing, analysis
- compute_normalize(param: NormalizeParam | None = None) None [source]#
Normalize data with
cdl.computation.image.compute_normalize()
- compute_sum() None [source]#
Compute sum with
cdl.computation.image.compute_addition()
- compute_addition_constant(param: ConstantParam | None = None) None [source]#
Compute sum with a constant using
cdl.computation.image.compute_addition_constant()
- compute_average() None [source]#
Compute average with
cdl.computation.image.compute_addition()
and dividing by the number of images
- compute_product() None [source]#
Compute product with
cdl.computation.image.compute_product()
- compute_product_constant(param: ConstantParam | None = None) None [source]#
Compute product with a constant using
cdl.computation.image.compute_product_constant()
- compute_logp1(param: LogP1Param | None = None) None [source]#
Compute base 10 logarithm using
cdl.computation.image.compute_logp1()
- compute_rotate(param: RotateParam | None = None) None [source]#
Rotate data arbitrarily using
cdl.computation.image.compute_rotate()
- compute_rotate90() None [source]#
Rotate data 90° with
cdl.computation.image.compute_rotate90()
- compute_rotate270() None [source]#
Rotate data 270° with
cdl.computation.image.compute_rotate270()
- compute_fliph() None [source]#
Flip data horizontally using
cdl.computation.image.compute_fliph()
- compute_flipv() None [source]#
Flip data vertically with
cdl.computation.image.compute_flipv()
- compute_resize(param: ResizeParam | None = None) None [source]#
Resize image with
cdl.computation.image.compute_resize()
- compute_binning(param: BinningParam | None = None) None [source]#
Binning image with
cdl.computation.image.compute_binning()
- compute_line_profile(param: LineProfileParam | None = None) None [source]#
Compute profile along a vertical or horizontal line with
cdl.computation.image.compute_line_profile()
- compute_segment_profile(param: SegmentProfileParam | None = None)[source]#
Compute profile along a segment with
cdl.computation.image.compute_segment_profile()
- compute_average_profile(param: AverageProfileParam | None = None) None [source]#
Compute average profile with
cdl.computation.image.compute_average_profile()
- compute_radial_profile(param: RadialProfileParam | None = None) None [source]#
Compute radial profile with
cdl.computation.image.compute_radial_profile()
- compute_histogram(param: HistogramParam | None = None) None [source]#
Compute histogram with
cdl.computation.image.compute_histogram()
- compute_swap_axes() None [source]#
Swap data axes with
cdl.computation.image.compute_swap_axes()
.
- compute_abs() None [source]#
Compute absolute value with
cdl.computation.image.compute_abs()
- compute_re() None [source]#
Compute real part with
cdl.computation.image.compute_re()
- compute_im() None [source]#
Compute imaginary part with
cdl.computation.image.compute_im()
- compute_astype(param: DataTypeIParam | None = None) None [source]#
Convert data type with
cdl.computation.image.compute_astype()
- compute_log10() None [source]#
Compute Log10 with
cdl.computation.image.compute_log10()
- compute_exp() None [source]#
Compute Log10 with
cdl.computation.image.compute_exp()
- compute_arithmetic(obj2: ImageObj | None = None, param: ArithmeticParam | None = None) None [source]#
Compute arithmetic operation between two images with
cdl.computation.image.compute_arithmetic()
- compute_difference(obj2: ImageObj | list[ImageObj] | None = None) None [source]#
Compute difference between two images with
cdl.computation.image.compute_difference()
- compute_difference_constant(param: ConstantParam | None = None) None [source]#
Compute difference with a constant with
cdl.computation.image.compute_difference_constant()
- compute_quadratic_difference(obj2: ImageObj | list[ImageObj] | None = None) None [source]#
Compute quadratic difference between two images with
cdl.computation.image.compute_quadratic_difference()
- compute_division(obj2: ImageObj | list[ImageObj] | None = None) None [source]#
Compute division between two images with
cdl.computation.image.compute_division()
- compute_division_constant(param: ConstantParam | None = None) None [source]#
Compute division by a constant with
cdl.computation.image.compute_division_constant()
- compute_flatfield(obj2: ImageObj | None = None, param: FlatFieldParam | None = None) None [source]#
Compute flat field correction with
cdl.computation.image.compute_flatfield()
- compute_calibration(param: ZCalibrateParam | None = None) None [source]#
Compute data linear calibration with
cdl.computation.image.compute_calibration()
- compute_clip(param: ClipParam | None = None) None [source]#
Compute maximum data clipping with
cdl.computation.image.compute_clip()
- compute_offset_correction(param: ROI2DParam | None = None) None [source]#
Compute offset correction with
cdl.computation.image.compute_offset_correction()
- compute_gaussian_filter(param: GaussianParam | None = None) None [source]#
Compute gaussian filter with
cdl.computation.image.compute_gaussian_filter()
- compute_moving_average(param: MovingAverageParam | None = None) None [source]#
Compute moving average with
cdl.computation.image.compute_moving_average()
- compute_moving_median(param: MovingMedianParam | None = None) None [source]#
Compute moving median with
cdl.computation.image.compute_moving_median()
- compute_wiener() None [source]#
Compute Wiener filter with
cdl.computation.image.compute_wiener()
- compute_fft(param: FFTParam | None = None) None [source]#
Compute FFT with
cdl.computation.image.compute_fft()
- compute_ifft(param: FFTParam | None = None) None [source]#
Compute iFFT with
cdl.computation.image.compute_ifft()
- compute_magnitude_spectrum(param: SpectrumParam | None = None) None [source]#
Compute magnitude spectrum with
cdl.computation.image.compute_magnitude_spectrum()
- compute_phase_spectrum() None [source]#
Compute phase spectrum with
cdl.computation.image.compute_phase_spectrum()
- compute_psd(param: SpectrumParam | None = None) None [source]#
Compute Power Spectral Density (PSD) with
cdl.computation.image.compute_psd()
- compute_butterworth(param: ButterworthParam | None = None) None [source]#
Compute Butterworth filter with
cdl.computation.image.compute_butterworth()
- compute_threshold(param: ThresholdParam | None = None) None [source]#
Compute parametric threshold with
cdl.computation.image.threshold.compute_threshold()
- compute_threshold_isodata() None [source]#
Compute threshold using Isodata algorithm with
cdl.computation.image.threshold.compute_threshold_isodata()
- compute_threshold_li() None [source]#
Compute threshold using Li algorithm with
cdl.computation.image.threshold.compute_threshold_li()
- compute_threshold_mean() None [source]#
Compute threshold using Mean algorithm with
cdl.computation.image.threshold.compute_threshold_mean()
- compute_threshold_minimum() None [source]#
Compute threshold using Minimum algorithm with
cdl.computation.image.threshold.compute_threshold_minimum()
- compute_threshold_otsu() None [source]#
Compute threshold using Otsu algorithm with
cdl.computation.image.threshold.compute_threshold_otsu()
- compute_threshold_triangle() None [source]#
Compute threshold using Triangle algorithm with
cdl.computation.image.threshold.compute_threshold_triangle()
- compute_threshold_yen() None [source]#
Compute threshold using Yen algorithm with
cdl.computation.image.threshold.compute_threshold_yen()
- compute_all_threshold() None [source]#
Compute all threshold algorithms using the following functions:
- compute_adjust_gamma(param: AdjustGammaParam | None = None) None [source]#
Compute gamma correction with
cdl.computation.image.exposure.compute_adjust_gamma()
- compute_adjust_log(param: AdjustLogParam | None = None) None [source]#
Compute log correction with
cdl.computation.image.exposure.compute_adjust_log()
- compute_adjust_sigmoid(param: AdjustSigmoidParam | None = None) None [source]#
Compute sigmoid correction with
cdl.computation.image.exposure.compute_adjust_sigmoid()
- compute_rescale_intensity(param: RescaleIntensityParam | None = None) None [source]#
Rescale image intensity levels with :py:func`cdl.computation.image.exposure.compute_rescale_intensity`
- compute_equalize_hist(param: EqualizeHistParam | None = None) None [source]#
Histogram equalization with
cdl.computation.image.exposure.compute_equalize_hist()
- compute_equalize_adapthist(param: EqualizeAdaptHistParam | None = None) None [source]#
Adaptive histogram equalization with
cdl.computation.image.exposure.compute_equalize_adapthist()
- compute_denoise_tv(param: DenoiseTVParam | None = None) None [source]#
Compute Total Variation denoising with
cdl.computation.image.restoration.compute_denoise_tv()
- compute_denoise_bilateral(param: DenoiseBilateralParam | None = None) None [source]#
Compute bilateral filter denoising with
cdl.computation.image.restoration.compute_denoise_bilateral()
- compute_denoise_wavelet(param: DenoiseWaveletParam | None = None) None [source]#
Compute Wavelet denoising with
cdl.computation.image.restoration.compute_denoise_wavelet()
- compute_denoise_tophat(param: MorphologyParam | None = None) None [source]#
Denoise using White Top-Hat with
cdl.computation.image.restoration.compute_denoise_tophat()
- compute_all_denoise(params: list | None = None) None [source]#
Compute all denoising filters using the following functions:
- compute_white_tophat(param: MorphologyParam | None = None) None [source]#
Compute White Top-Hat with
cdl.computation.image.morphology.compute_white_tophat()
- compute_black_tophat(param: MorphologyParam | None = None) None [source]#
Compute Black Top-Hat with
cdl.computation.image.morphology.compute_black_tophat()
- compute_erosion(param: MorphologyParam | None = None) None [source]#
Compute Erosion with
cdl.computation.image.morphology.compute_erosion()
- compute_dilation(param: MorphologyParam | None = None) None [source]#
Compute Dilation with
cdl.computation.image.morphology.compute_dilation()
- compute_opening(param: MorphologyParam | None = None) None [source]#
Compute morphological opening with
cdl.computation.image.morphology.compute_opening()
- compute_closing(param: MorphologyParam | None = None) None [source]#
Compute morphological closing with
cdl.computation.image.morphology.compute_closing()
- compute_all_morphology(param: MorphologyParam | None = None) None [source]#
Compute all morphology filters using the following functions:
- compute_canny(param: CannyParam | None = None) None [source]#
Compute Canny filter with
cdl.computation.image.edges.compute_canny()
- compute_roberts() None [source]#
Compute Roberts filter with
cdl.computation.image.edges.compute_roberts()
- compute_prewitt() None [source]#
Compute Prewitt filter with
cdl.computation.image.edges.compute_prewitt()
- compute_prewitt_h() None [source]#
Compute Prewitt filter (horizontal) with
cdl.computation.image.edges.compute_prewitt_h()
- compute_prewitt_v() None [source]#
Compute Prewitt filter (vertical) with
cdl.computation.image.edges.compute_prewitt_v()
- compute_sobel() None [source]#
Compute Sobel filter with
cdl.computation.image.edges.compute_sobel()
- compute_sobel_h() None [source]#
Compute Sobel filter (horizontal) with
cdl.computation.image.edges.compute_sobel_h()
- compute_sobel_v() None [source]#
Compute Sobel filter (vertical) with
cdl.computation.image.edges.compute_sobel_v()
- compute_scharr() None [source]#
Compute Scharr filter with
cdl.computation.image.edges.compute_scharr()
- compute_scharr_h() None [source]#
Compute Scharr filter (horizontal) with
cdl.computation.image.edges.compute_scharr_h()
- compute_scharr_v() None [source]#
Compute Scharr filter (vertical) with
cdl.computation.image.edges.compute_scharr_v()
- compute_farid() None [source]#
Compute Farid filter with
cdl.computation.image.edges.compute_farid()
- compute_farid_h() None [source]#
Compute Farid filter (horizontal) with
cdl.computation.image.edges.compute_farid_h()
- compute_farid_v() None [source]#
Compute Farid filter (vertical) with
cdl.computation.image.edges.compute_farid_v()
- compute_laplace() None [source]#
Compute Laplace filter with
cdl.computation.image.edges.compute_laplace()
- compute_stats() dict[str, ResultProperties] [source]#
Compute data statistics with
cdl.computation.image.compute_stats()
- compute_centroid() dict[str, ResultShape] [source]#
Compute image centroid with
cdl.computation.image.compute_centroid()
- compute_enclosing_circle() dict[str, ResultShape] [source]#
Compute minimum enclosing circle with
cdl.computation.image.compute_enclosing_circle()
- compute_peak_detection(param: Peak2DDetectionParam | None = None) dict[str, ResultShape] [source]#
Compute 2D peak detection with
cdl.computation.image.compute_peak_detection()
- compute_contour_shape(param: ContourShapeParam | None = None) dict[str, ResultShape] [source]#
Compute contour shape fit with
cdl.computation.image.detection.compute_contour_shape()
- compute_hough_circle_peaks(param: HoughCircleParam | None = None) dict[str, ResultShape] [source]#
Compute peak detection based on a circle Hough transform with
cdl.computation.image.compute_hough_circle_peaks()
- compute_blob_dog(param: BlobDOGParam | None = None) dict[str, ResultShape] [source]#
Compute blob detection using Difference of Gaussian method with
cdl.computation.image.detection.compute_blob_dog()
- compute_blob_doh(param: BlobDOHParam | None = None) dict[str, ResultShape] [source]#
Compute blob detection using Determinant of Hessian method with
cdl.computation.image.detection.compute_blob_doh()
- compute_blob_log(param: BlobLOGParam | None = None) dict[str, ResultShape] [source]#
Compute blob detection using Laplacian of Gaussian method with
cdl.computation.image.detection.compute_blob_log()
- compute_blob_opencv(param: BlobOpenCVParam | None = None) dict[str, ResultShape] [source]#
Compute blob detection using OpenCV with
cdl.computation.image.detection.compute_blob_opencv()