Etat de validation de DataLab#
Validation fonctionnelle#
Dans DataLab, la validation fonctionnelle est basée sur une stratégie de test classique (voir Validation fonctionnelle).
La couverture de test est d’environ 90%, avec plus de 200 tests.
Validation technique#
Ce paragraphe fournit l’état de validation des fonctions de calcul dans DataLab (c’est ce que nous appelons validation technique, voir Validation technique).
Note
Il s’agit d’un travail en cours : les tableaux ci-dessous sont mis à jour en continu à mesure que de nouvelles fonctions sont validées ou que le code de test est adapté (les tableaux sont générés à partir du code de test). Certaines fonctions sont déjà validées mais n’apparaissent pas encore dans la liste ci-dessous, tandis que d’autres sont encore en cours de validation.
Avertissement
L’état de validation ne doit pas être confondu avec la couverture de test. L’état de validation indique si la fonction a été validée par rapport à des données de référence ou des modèles analytiques. La couverture de test indique le pourcentage du code qui est exécuté par la suite de tests, mais elle ne prend pas nécessairement en compte la justesse des résultats (la couverture de test de DataLab est d’environ 90%).
Catégorie |
Signal |
Image |
Total |
---|---|---|---|
Nombre de fonctions de calcul |
62 |
95 |
157 |
Nombre de fonctions de calcul validées |
50 |
83 |
133 |
Pourcentage de fonctions de calcul validées |
80% |
87% |
84% |
Fonctions de calcul signal#
Le tableau ci-dessous montre l’état de validation des fonctions de calcul signal dans DataLab. Il est généré automatiquement à partir du code source.
Fonctions de calcul |
Description |
Fonction de test |
---|---|---|
Compute absolute value with |
||
Add dst and src signals and return dst signal modified in place |
||
Add dst and a constant value and return a the new result signal object |
||
Compute Allan deviation with |
||
Compute Allan variance with |
||
Perform arithmetic operation on two signals |
||
Convert data type with |
||
Compute bandwidth at -3 dB with |
||
Compute linear calibration |
||
Convert cartesian coordinates to polar coordinates |
||
Compute maximum data clipping with |
||
Compute contrast with |
||
Compute convolution of two signals |
||
Compute derivative with |
||
Detrend data with |
N/A |
|
Compute difference between two signals |
||
Subtract a constant value from a signal |
||
Compute division between two signals |
||
Divide a signal by a constant value |
||
Compute Dynamic parameters |
||
Compute exponential with |
||
Compute FFT with |
||
Compute frequency filter (low-pass, high-pass, band-pass, band-stop) |
N/A |
|
Compute FW at 1/e² with |
||
Compute FWHM with |
||
Compute gaussian filter with |
||
Compute Hadamard variance |
N/A |
|
Compute histogram with |
N/A |
|
Compute iFFT with |
||
Compute imaginary part with |
||
Compute integral with |
||
Interpolate data with |
N/A |
|
Compute inverse with |
||
Compute Log10 with |
||
Compute magnitude spectrum |
||
Compute Modified Allan variance |
N/A |
|
Compute moving average with |
||
Compute moving median with |
||
Normalize data with |
||
Correct offset: subtract the mean value of the signal in the specified range |
||
Compute Overlapping Allan variance |
N/A |
|
Peak detection with |
N/A |
|
Compute phase spectrum |
||
Convert polar coordinates to cartesian coordinates |
||
Compute power with |
||
Multiply dst and src signals and return dst signal modified in place |
||
Multiply dst by a constant value and return the new result signal object |
||
Compute power spectral density |
||
Compute quadratic difference between two signals |
||
Compute real part with |
||
Resample data with |
N/A |
|
Reverse x-axis |
||
Compute sampling rate and period |
||
Compute square root with |
||
Compute statistics on a signal |
||
Swap axes |
||
Compute Time Deviation (TDEV) |
N/A |
|
Compute Total variance |
N/A |
|
Compute Wiener filter with |
||
Compute windowing (available methods: hamming, hanning, bartlett, blackman |
N/A |
|
Fonctions de calcul image#
Le tableau ci-dessous montre l’état de validation des fonctions de calcul image dans DataLab. Il est généré automatiquement à partir du code source.
Fonctions de calcul |
Description |
Fonction de test |
---|---|---|
Compute absolute value with |
||
Add dst and src images and return dst image modified in place |
||
Add dst and a constant value and return the new result image object |
||
Compute arithmetic operation on two images |
||
Convert image data type with |
||
Compute horizontal or vertical average profile |
||
Binning function on data with |
||
Compute Butterworth filter with |
||
Compute linear calibration |
||
Compute centroid |
||
Apply clipping with |
||
Compute difference between two images |
||
Subtract a constant value from an image and return the new result image object |
||
Compute division between two images |
||
Divide an image by a constant value and return the new result image object |
||
Compute minimum enclosing circle |
N/A |
|
Compute exponential with |
||
Compute FFT with |
||
Compute flat field correction with |
N/A |
|
Flip data horizontally with |
||
Flip data vertically with |
||
Compute gaussian filter with |
||
Compute histogram of the image data, with |
N/A |
|
Compute Hough circles |
N/A |
|
Compute inverse FFT with |
||
Compute imaginary part with |
||
Compute the inverse of an image and return the new result image object |
||
Compute horizontal or vertical profile |
||
Compute log10 with |
||
Compute log10(z+n) with |
||
Compute magnitude spectrum |
||
Compute moving average with |
||
Compute moving median with |
||
Apply offset correction |
||
Compute phase spectrum |
||
Multiply dst and src images and return dst image modified in place |
||
Multiply dst by a constant value and return the new result image object |
||
Compute power spectral density |
||
Compute quadratic difference between two images |
||
Compute radial profile around the centroid |
N/A |
|
Compute real part with |
||
Zooming function with |
N/A |
|
Rotate data with |
||
Rotate data 270° with |
||
Rotate data 90° with |
||
Compute segment profile |
||
Compute statistics on an image |
||
Swap image axes with |
||
Compute Wiener filter with |
||
Compute blobs using Difference of Gaussian method |
N/A |
|
Compute blobs using Determinant of Hessian method |
N/A |
|
Compute blobs using Laplacian of Gaussian method |
N/A |
|
Compute blobs using OpenCV |
N/A |
|
Compute contour shape fit |
N/A |
|
Compute 2D peak detection |
N/A |
|
Compute Canny filter with |
||
Compute Farid filter with |
||
Compute horizontal Farid filter with |
||
Compute vertical Farid filter with |
||
Compute Laplace filter with |
||
Compute Prewitt filter with |
||
Compute horizontal Prewitt filter with |
||
Compute vertical Prewitt filter with |
||
Compute Roberts filter with |
||
Compute Scharr filter with |
||
Compute horizontal Scharr filter with |
||
Compute vertical Scharr filter with |
||
Compute Sobel filter with |
||
Compute horizontal Sobel filter with |
||
Compute vertical Sobel filter with |
||
Gamma correction with |
||
Compute log correction with |
||
Compute sigmoid correction with |
||
Adaptive histogram equalization |
||
Histogram equalization with |
||
Rescale image intensity levels |
||
Compute Black Top-Hat with |
||
Compute morphological closing with |
||
Compute Dilation with |
||
Compute Erosion with |
||
Compute morphological opening with |
||
Compute White Top-Hat with |
||
Compute bilateral filter denoising |
||
Denoise using White Top-Hat |
||
Compute Total Variation denoising |
||
Compute Wavelet denoising |
||
Compute the threshold, using one of the available algorithms |
||
Compute the threshold using the Isodata algorithm with default parameters |
||
Compute the threshold using the Li algorithm with default parameters |
||
Compute the threshold using the Mean algorithm |
||
Compute the threshold using the Minimum algorithm with default parameters |
||
Compute the threshold using the Otsu algorithm with default parameters |
||
Compute the threshold using the Triangle algorithm with default parameters |
||
Compute the threshold using the Yen algorithm with default parameters |