Etat de validation de DataLab#
Validation fonctionnelle#
Dans DataLab, la validation fonctionnelle est basée sur une stratégie de test classique (voir Validation fonctionnelle).
La couverture de test est d’environ 90%, avec plus de 200 tests.
Validation technique#
Ce paragraphe fournit l’état de validation des fonctions de calcul dans DataLab (c’est ce que nous appelons validation technique, voir Validation technique).
Note
Il s’agit d’un travail en cours : les tableaux ci-dessous sont mis à jour en continu à mesure que de nouvelles fonctions sont validées ou que le code de test est adapté (les tableaux sont générés à partir du code de test). Certaines fonctions sont déjà validées mais n’apparaissent pas encore dans la liste ci-dessous, tandis que d’autres sont encore en cours de validation.
Avertissement
L’état de validation ne doit pas être confondu avec la couverture de test. L’état de validation indique si la fonction a été validée par rapport à des données de référence ou des modèles analytiques. La couverture de test indique le pourcentage du code qui est exécuté par la suite de tests, mais elle ne prend pas nécessairement en compte la justesse des résultats (la couverture de test de DataLab est d’environ 90%).
Catégorie |
Signal |
Image |
Total |
|---|---|---|---|
Nombre de fonctions de calcul |
96 |
115 |
211 |
Nombre de fonctions de calcul validées |
96 |
115 |
211 |
Pourcentage de fonctions de calcul validées |
100% |
100% |
100% |
Fonctions de calcul signal#
Le tableau ci-dessous montre l’état de validation des fonctions de calcul signal dans DataLab. Il est généré automatiquement à partir du code source.
Fonctions de calcul |
Description |
Fonction de test |
|---|---|---|
|
Compute absolute value with |
|
|
Add normal noise to the input signal |
|
|
Add Poisson noise to the input signal |
|
|
Add uniform noise to the input signal |
|
|
Compute the element-wise sum of multiple signals |
|
|
Compute the sum of a signal and a constant value |
|
|
Calculer la déviation d’Allan |
|
|
Compute Allan variance |
|
|
Calculer la fenêtrage |
|
|
Perform an arithmetic operation on two signals |
|
|
Convert data type |
|
|
Compute the element-wise average of multiple signals |
|
|
Compute band-pass filter |
|
|
Compute band-stop filter |
|
|
Compute bandwidth at -3 dB |
|
|
Compute linear calibration |
|
|
Compute CDF fit |
|
|
Compute maximum data clipping |
|
|
Combine magnitude and phase signals into a complex signal |
|
|
Combine two real signals into a complex signal using real + i * imag |
|
|
Calculer le contraste |
|
|
Compute convolution of two signals |
|
|
Calculer la déconvolution |
|
|
Calculer la dérivée |
|
|
Detrend data |
|
|
Compute the element-wise difference between two signals |
|
|
Compute the difference between a signal and a constant value |
|
|
Compute the element-wise division between two signals |
|
|
Compute the division of a signal by a constant value |
|
|
Compute Dynamic parameters |
|
|
Evaluate fit function from src1 on the x-axis of src2 |
|
|
Compute exponential with |
|
|
Calculer l’ajustement exponentiel |
|
|
Extract pulse features |
|
|
Extract single region of interest from data |
|
|
Extract multiple regions of interest from data |
|
|
Calculer la FFT |
|
|
||
|
Compute FW at 1/e² |
|
|
Fonctions de calcul |
|
|
Compute gaussian filter |
|
|
Calculer la déviation d’Allan |
|
|
Compute Hadamard variance |
|
|
Compute high-pass filter |
|
|
Calculer l’histogramme |
|
|
Compute the inverse FFT |
|
|
Compute imaginary part |
|
|
Calculer l’intégrale |
|
|
Interpolate data |
|
|
Compute the element-wise inverse of a signal |
|
|
Calculer l’ajustement linéaire |
|
|
Compute Log10 with |
|
|
Calculer l’ajustement lorentzien |
|
|
Compute low-pass filter |
|
|
Compute magnitude spectrum |
|
|
Compute Modified Allan variance |
|
|
Compute moving average |
|
|
Compute moving median |
|
|
Normalize data |
|
|
Correct offset: subtract the mean value of the signal in the specified range |
|
|
Compute Overlapping Allan variance |
|
|
Peak detection |
|
|
Compute the phase (argument) of a complex signal |
|
|
Compute phase spectrum |
|
|
Calculer l’ajustement exponentiel par morceaux (augmentation-décroissance) |
|
|
Calculer l’ajustement de Planck |
|
|
Calculer l’ajustement polynomial |
|
|
Compute power with |
|
|
Compute the element-wise product of multiple signals |
|
|
Compute the product of a signal and a constant value |
|
|
Compute power spectral density |
|
|
Compute the normalized difference between two signals |
|
|
Calculer la partie réelle |
|
|
Create a new signal using Y from src1 and Y from src2 as X coordinates |
|
|
Resample data |
|
|
Reverse x-axis |
|
|
Compute sampling rate and period |
|
|
Calculer l’ajustement sigmoïde |
|
|
Combine multiple signals into an image |
|
|
Calculer l’ajustement sinusoïdal |
|
|
Compute square root with |
|
|
Compute the element-wise standard deviation of multiple signals |
|
|
Compute statistics on a signal |
|
|
Compute Time Deviation (TDEV) |
|
|
Convert polar coordinates to Cartesian coordinates |
|
|
Convert Cartesian coordinates to polar coordinates |
|
|
Compute Total variance |
|
|
Transpose signal (swap X and Y axes) |
|
|
Compute two-half-Gaussian fit |
|
|
Calculer l’ajustement de Voigt |
|
|
Compute Wiener filter |
|
|
||
|
||
|
Simulate the X-Y mode of an oscilloscope |
|
|
||
|
Compute zero padding |
Fonctions de calcul image#
Le tableau ci-dessous montre l’état de validation des fonctions de calcul image dans DataLab. Il est généré automatiquement à partir du code source.
Fonctions de calcul |
Description |
Fonction de test |
|---|---|---|
|
Compute absolute value with |
|
|
Add Gaussian (normal) noise to the input image |
|
|
Add Poisson noise to the input image |
|
|
Add uniform noise to the input image |
|
|
Add images in the list and return the result image object |
|
|
Add dst and a constant value and return the new result image object |
|
|
Gamma correction |
|
|
Calculer l’ajustement logarithmique |
|
|
Calculer l’ajustement sigmoïde |
|
|
Compute arithmetic operation on two images |
|
|
Convert image data type |
|
|
Compute the average of images in the list and return the result image object |
|
|
Compute horizontal or vertical average profile |
|
|
Binning: image pixel binning (or aggregation) |
|
|
Compute Black Top-Hat |
|
|
Compute blobs using Difference of Gaussian method |
|
|
Compute blobs using Determinant of Hessian method |
|
|
Compute blobs using Laplacian of Gaussian method |
|
|
Compute blobs using OpenCV |
|
|
Compute Butterworth filter |
|
|
Calculer l’étalonnage polynomial |
|
|
Compute Canny filter |
|
|
Compute centroid |
|
|
Apply clipping |
|
|
Compute morphological closing |
|
|
Combine magnitude and phase images into a complex image |
|
|
Combine two real images into a complex image using real + i * imag |
|
|
Compute contour shape |
|
|
Convolve an image with a kernel |
|
|
Deconvolve a kernel from an image using Fast Fourier Transform (FFT) |
|
|
Compute bilateral filter denoising |
|
|
Denoise using White Top-Hat |
|
|
Compute Total Variation denoising |
|
|
Compute Wavelet denoising |
|
|
Compute difference between two images |
|
|
Subtract a constant value from an image and return the new result image object |
|
|
Calculer la dilatation |
|
|
Compute division between two images |
|
|
Divide an image by a constant value and return the new result image object |
|
|
Compute minimum enclosing circle |
|
|
Adaptive histogram equalization |
|
|
Histogram equalization |
|
|
Erase an area of the image using the mean value of the image |
|
|
Calculer l’érosion |
|
|
Compute exponential with |
|
|
Extract single ROI |
|
|
Extract multiple regions of interest from data |
|
|
Compute Farid filter |
|
|
Compute horizontal Farid filter |
|
|
Compute vertical Farid filter |
|
|
Calculer la FFT |
|
|
Calculer la correction de champ plat |
|
|
Flip data horizontally |
|
|
Flip data vertically |
|
|
Compute gaussian filter |
|
|
Apply a Gaussian filter in the frequency domain |
|
|
Compute histogram of the image data, |
|
|
Compute the sum of pixel intensities along each col. (projection on the x-axis) |
|
|
Compute Hough circles |
|
|
Compute inverse FFT |
|
|
Compute imaginary part |
|
|
Compute the inverse of an image and return the new result image object |
|
|
Compute Laplace filter |
|
|
Compute horizontal or vertical profile |
|
|
Compute log10 with |
|
|
Compute log10(z+n) with |
|
|
Compute magnitude spectrum |
|
|
Compute moving average |
|
|
Compute moving median |
|
|
||
|
Apply offset correction |
|
|
Compute morphological opening |
|
|
Compute 2D peak detection |
|
|
Compute the phase (argument) of a complex image |
|
|
Compute phase spectrum |
|
|
Compute Prewitt filter |
|
|
Compute horizontal Prewitt filter |
|
|
Compute vertical Prewitt filter |
|
|
Multiply images in the list and return the result image object |
|
|
Multiply dst by a constant value and return the new result image object |
|
|
Compute power spectral density |
|
|
Compute quadratic difference between two images |
|
|
Compute radial profile around the centroid |
|
|
Calculer la partie réelle |
|
|
Resample image to new coordinate grid using interpolation |
|
|
Rescale image intensity levels |
|
|
Fonction de zoom |
|
|
Compute Roberts filter |
|
|
Rotate data |
|
|
Rotate data 270° |
|
|
Rotate data 90° |
|
|
Compute Scharr filter |
|
|
Compute horizontal Scharr filter |
|
|
Compute vertical Scharr filter |
|
|
Compute segment profile |
|
|
Convert image to uniform coordinate system |
|
|
Compute Sobel filter |
|
|
Compute horizontal Sobel filter |
|
|
Compute vertical Sobel filter |
|
|
Compute the element-wise standard deviation of multiple images |
|
|
Compute statistics on an image |
|
|
Compute the threshold, using one of the available algorithms |
|
|
Compute the threshold using the Isodata algorithm with default parameters |
|
|
Compute the threshold using the Li algorithm with default parameters |
|
|
Compute the threshold using the Mean algorithm |
|
|
Compute the threshold using the Minimum algorithm with default parameters |
|
|
Compute the threshold using the Otsu algorithm with default parameters |
|
|
Compute the threshold using the Triangle algorithm with default parameters |
|
|
Compute the threshold using the Yen algorithm with default parameters |
|
|
Translate data |
|
|
Transpose image |
|
|
Compute the sum of pixel intensities along each row (projection on the y-axis) |
|
|
Compute White Top-Hat |
|
|
Compute Wiener filter |
|
|
Zero-padding: add zeros to image borders |