Key features#

This page presents briefly DataLab key features.

../_images/DataLab-Screenshot-Theme.png

DataLab supports dark and light mode depending on your platform settings (this is handled by the guidata package, and may be overridden by setting the QT_COLOR_MODE environment variable to dark or light).#

Data visualization#

Signal

Image

Feature

āœ“

āœ“

Screenshots (save, copy)

āœ“

Z-axis

Lin/log scales

āœ“

āœ“

Data table editing

āœ“

āœ“

Statistics on user-defined ROI

āœ“

āœ“

Markers

āœ“

Aspect ratio (1:1, custom)

āœ“

50+ available colormaps (customizable)

āœ“

Intensity profiles (line, average, radial)

āœ“

āœ“

Annotations

āœ“

āœ“

Persistance of settings in workspace

āœ“

Distribute images on a grid

āœ“

āœ“

Single or superimposed views

Data processing#

Signal

Image

Feature

āœ“

āœ“

Process isolation for running computations

āœ“

āœ“

Remote control from Jupyter, Spyder or any IDE

āœ“

āœ“

Remote control from a third-party application

āœ“

āœ“

Sum, average, difference, product, ā€¦

āœ“

āœ“

Operations with a constant

āœ“

āœ“

ROI extraction, Swap X/Y axes

āœ“

Semi-automatic multi-peak detection

āœ“

Convolution

āœ“

Flat-field correction

āœ“

Rotation (flip, rotate), resize, ā€¦

āœ“

Intensity profiles (line, average, radial)

āœ“

Pixel binning

āœ“

āœ“

Square root, power, logarithm, exponential, ā€¦

āœ“

Derivative, integral

āœ“

āœ“

Linear calibration

āœ“

āœ“

Normalization, Clipping, Offset correction

āœ“

Reverse X-axis

āœ“

Thresholding (manual, Otsu, ā€¦)

āœ“

āœ“

Gaussian filter, Wiener filter

āœ“

āœ“

Moving average, moving median

āœ“

āœ“

FFT, inverse FFT, Power/Phase/Magnitude spectrum, Power Spectral Density

āœ“

Interpolation, resampling

āœ“

Detrending

āœ“

Interactive fit: Gauss, Lorentz, Voigt, polynomial, CDF, ā€¦

āœ“

Interactive multigaussian fit

āœ“

Frequency filters (low-pass, high-pass, band-pass, band-stop)

āœ“

Windowing (Hamming, Hanning, ā€¦)

āœ“

Butterworth filter

āœ“

Exposure correction (gamma, log, ā€¦)

āœ“

Restauration (Total Variation, Bilateral, ā€¦)

āœ“

Morphology (erosion, dilation, ā€¦)

āœ“

Edges detection (Roberts, Sobel, ā€¦)

āœ“

āœ“

Analysis on custom ROI

āœ“

FWHM, FW @ 1/eĀ²

āœ“

Dynamic parameters (ENOB, SNR, ā€¦), Sampling period/Rate

āœ“

Centroid (robust method w/r noise)

āœ“

Minimum enclosing circle center

āœ“

2D peak detection

āœ“

Contour detection

āœ“

Circle Hough transform

āœ“

Blob detection (OpenCV, Laplacian of Gaussian, ā€¦)