# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
"""
Image object and related classes
--------------------------------
"""
# pylint: disable=invalid-name # Allows short reference names like x, y, ...
# pylint: disable=duplicate-code
from __future__ import annotations
import abc
import enum
import re
from collections.abc import ByteString, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Generic, Literal, Type, Union
from uuid import uuid4
import guidata.dataset as gds
import numpy as np
from guidata.configtools import get_icon
from guidata.dataset import update_dataset
from plotpy.builder import make
from plotpy.items import (
AnnotatedCircle,
AnnotatedPolygon,
AnnotatedRectangle,
MaskedImageItem,
)
from skimage import draw
from cdl.algorithms.datatypes import clip_astype
from cdl.algorithms.image import scale_data_to_min_max
from cdl.config import Conf, _
from cdl.core.model import base
if TYPE_CHECKING:
from qtpy import QtWidgets as QW
def to_builtin(obj) -> str | int | float | list | dict | np.ndarray | None:
"""Convert an object implementing a numeric value or collection
into the corresponding builtin/NumPy type.
Return None if conversion fails."""
try:
return int(obj) if int(obj) == float(obj) else float(obj)
except (TypeError, ValueError):
pass
if isinstance(obj, ByteString):
return str(obj)
if isinstance(obj, Sequence):
return str(obj) if len(obj) == len(str(obj)) else list(obj)
if isinstance(obj, Mapping):
return dict(obj)
if isinstance(obj, np.ndarray):
return obj
return None
[docs]
class ROI2DParam(base.BaseROIParam["ImageObj", "BaseSingleImageROI"]):
"""Image ROI parameters"""
# Note: the ROI coordinates are expressed in pixel coordinates (integers)
# => That is the only way to handle ROI parametrization for image objects.
# Otherwise, we would have to ask the user to systematically provide the
# physical coordinates: that would be cumbersome and error-prone.
_geometry_prop = gds.GetAttrProp("geometry")
_rfp = gds.FuncProp(_geometry_prop, lambda x: x != "rectangle")
_cfp = gds.FuncProp(_geometry_prop, lambda x: x != "circle")
_pfp = gds.FuncProp(_geometry_prop, lambda x: x != "polygon")
# Do not declare it as a static method: not supported by Python 3.9
def _lbl(name: str, index: int): # pylint: disable=no-self-argument
"""Returns name<sub>index</sub>"""
return f"{name}<sub>{index}</sub>"
_ut = "pixels"
geometries = ("rectangle", "circle", "polygon")
geometry = gds.ChoiceItem(
_("Geometry"), list(zip(geometries, geometries)), default="rectangle"
).set_prop("display", store=_geometry_prop, hide=True)
# Parameters for rectangular ROI geometry:
_tlcorner = gds.BeginGroup(_("Top left corner")).set_prop("display", hide=_rfp)
x0 = gds.IntItem(_lbl("X", 0), unit=_ut).set_prop("display", hide=_rfp)
y0 = gds.IntItem(_lbl("Y", 0), unit=_ut).set_pos(1).set_prop("display", hide=_rfp)
_e_tlcorner = gds.EndGroup(_("Top left corner"))
dx = gds.IntItem("ΔX", unit=_ut).set_prop("display", hide=_rfp)
dy = gds.IntItem("ΔY", unit=_ut).set_pos(1).set_prop("display", hide=_rfp)
# Parameters for circular ROI geometry:
_cgroup = gds.BeginGroup(_("Center coordinates")).set_prop("display", hide=_cfp)
xc = gds.IntItem(_lbl("X", "C"), unit=_ut).set_prop("display", hide=_cfp)
yc = gds.IntItem(_lbl("Y", "C"), unit=_ut).set_pos(1).set_prop("display", hide=_cfp)
_e_cgroup = gds.EndGroup(_("Center coordinates"))
r = gds.IntItem(_("Radius"), unit=_ut).set_prop("display", hide=_cfp)
# Parameters for polygonal ROI geometry:
points = gds.FloatArrayItem(_("Coordinates") + f" ({_ut})").set_prop(
"display", hide=_pfp
)
[docs]
def to_single_roi(
self, obj: ImageObj, title: str = ""
) -> PolygonalROI | RectangularROI | CircularROI:
"""Convert parameters to single ROI
Args:
obj: image object (used for conversion of pixel to physical coordinates)
title: ROI title
Returns:
Single ROI
"""
if self.geometry == "rectangle":
return RectangularROI.from_param(obj, self)
if self.geometry == "circle":
return CircularROI.from_param(obj, self)
if self.geometry == "polygon":
return PolygonalROI.from_param(obj, self)
raise ValueError(f"Unknown ROI geometry type: {self.geometry}")
[docs]
def get_suffix(self) -> str:
"""Get suffix text representation for ROI extraction"""
if self.geometry == "rectangle":
return f"x0={self.x0},y0={self.y0},dx={self.dx},dy={self.dy}"
if self.geometry == "circle":
return f"xc={self.xc},yc={self.yc},r={self.r}"
if self.geometry == "polygon":
return "polygon"
raise ValueError(f"Unknown ROI geometry type: {self.geometry}")
[docs]
def get_bounding_box_indices(self) -> tuple[int, int, int, int]:
"""Get bounding box (pixel coordinates)"""
if self.geometry == "circle":
x0, y0 = self.xc - self.r, self.yc - self.r
x1, y1 = self.xc + self.r, self.yc + self.r
elif self.geometry == "rectangle":
x0, y0, x1, y1 = self.x0, self.y0, self.x0 + self.dx, self.y0 + self.dy
else:
self.points: np.ndarray
x0, y0 = self.points[::2].min(), self.points[1::2].min()
x1, y1 = self.points[::2].max(), self.points[1::2].max()
return x0, y0, x1, y1
[docs]
def get_data(self, obj: ImageObj) -> np.ndarray:
"""Get data in ROI
Args:
obj: image object
Returns:
Data in ROI
"""
x0, y0, x1, y1 = self.get_bounding_box_indices()
x0, y0 = max(0, x0), max(0, y0)
x1, y1 = min(obj.data.shape[1], x1), min(obj.data.shape[0], y1)
return obj.data[y0:y1, x0:x1]
class BaseSingleImageROI(
base.BaseSingleROI["ImageObj", ROI2DParam, base.TypeROIItem],
Generic[base.TypeROIItem],
abc.ABC,
):
"""Base class for single image ROI
Args:
coords: ROI edge coordinates (floats)
title: ROI title
.. note::
The image ROI coords are expressed in physical coordinates (floats). The
conversion to pixel coordinates is done in :class:`cdl.obj.ImageObj`
(see :meth:`cdl.obj.ImageObj.physical_to_indices`). Most of the time,
the physical coordinates are the same as the pixel coordinates, but this
is not always the case (e.g. after image binning), so it's better to keep the
physical coordinates in the ROI object: this will help reusing the ROI with
different images (e.g. with different pixel sizes).
"""
@abc.abstractmethod
def get_bounding_box(self, obj: ImageObj) -> tuple[float, float, float, float]:
"""Get bounding box (physical coordinates)
Args:
obj: image object
"""
@abc.abstractmethod
def translate(self, obj: ImageObj, dx: int, dy: int) -> None:
"""Translate ROI
Args:
obj: image object
dx: translation along X-axis
dy: translation along Y-axis
"""
class PolygonalROI(BaseSingleImageROI[AnnotatedPolygon]):
"""Polygonal ROI
Args:
coords: ROI edge coordinates
title: title
Raises:
ValueError: if number of coordinates is odd
.. note:: The image ROI coords are expressed in physical coordinates (floats)
"""
def check_coords(self) -> None:
"""Check if coords are valid
Raises:
ValueError: invalid coords
"""
if len(self.coords) % 2 != 0:
raise ValueError("Edge indices must be pairs of X, Y values")
# pylint: disable=unused-argument
@classmethod
def from_param(cls: PolygonalROI, obj: ImageObj, param: ROI2DParam) -> PolygonalROI:
"""Create ROI from parameters
Args:
obj: image object
param: parameters
"""
indices = True # ROI coordinates are in pixel coordinates in `ROI2DParam`
return cls(param.points, indices=indices, title=param.get_title())
def get_bounding_box(self, obj: ImageObj) -> tuple[float, float, float, float]:
"""Get bounding box (physical coordinates)
Args:
obj: image object
"""
coords = self.get_physical_coords(obj)
x_edges, y_edges = coords[::2], coords[1::2]
return min(x_edges), min(y_edges), max(x_edges), max(y_edges)
def translate(self, obj: ImageObj, dx: int, dy: int) -> None:
"""Translate ROI
Args:
obj: image object
dx: translation along X-axis
dy: translation along Y-axis
"""
coords = self.get_indices_coords(obj)
coords[::2] += int(dx)
coords[1::2] += int(dy)
self.set_indices_coords(obj, coords)
def to_mask(self, obj: ImageObj) -> np.ndarray:
"""Create mask from ROI
Args:
obj: image object
Returns:
Mask (boolean array where True values are inside the ROI)
"""
roi_mask = np.ones_like(obj.data, dtype=bool)
indices = self.get_indices_coords(obj)
rows, cols = indices[1::2], indices[::2]
rr, cc = draw.polygon(rows, cols, shape=obj.data.shape)
roi_mask[rr, cc] = False
return roi_mask
def to_param(self, obj: ImageObj, title: str | None = None) -> ROI2DParam:
"""Convert ROI to parameters
Args:
obj: object (image), for physical-indices coordinates conversion
title: ROI title
"""
param = ROI2DParam(title=self.title if title is None else title)
param.geometry = "polygon"
param.points = self.get_indices_coords(obj)
return param
def to_plot_item(self, obj: ImageObj, title: str | None = None) -> AnnotatedPolygon:
"""Make and return the annnotated polygon associated to ROI
Args:
obj: object (image), for physical-indices coordinates conversion
title: title
"""
item = AnnotatedPolygon(self.get_physical_coords(obj).reshape(-1, 2))
item.annotationparam.title = self.title if title is None else title
item.annotationparam.update_item(item)
item.set_style("plot", "shape/drag")
return item
@classmethod
def from_plot_item(cls: PolygonalROI, item: AnnotatedPolygon) -> PolygonalROI:
"""Create ROI from plot item
Args:
item: plot item
"""
return cls(item.get_points().flatten(), False, item.annotationparam.title)
class RectangularROI(BaseSingleImageROI[AnnotatedRectangle]):
"""Rectangular ROI
Args:
coords: ROI edge coordinates (x0, y0, dx, dy)
title: title
.. note:: The image ROI coords are expressed in physical coordinates (floats)
"""
def check_coords(self) -> None:
"""Check if coords are valid
Raises:
ValueError: invalid coords
"""
if len(self.coords) != 4:
raise ValueError("Rectangle ROI requires 4 coordinates")
@classmethod
def from_param(
cls: RectangularROI, obj: ImageObj, param: ROI2DParam
) -> RectangularROI:
"""Create ROI from parameters
Args:
obj: image object
param: parameters
"""
ix0, iy0, ix1, iy1 = param.get_bounding_box_indices()
coords = [ix0, iy0, ix1 - ix0, iy1 - iy0]
indices = True # ROI coordinates are in pixel coordinates in `ROI2DParam`
return cls(coords, indices=indices, title=param.get_title())
def get_bounding_box(self, obj: ImageObj) -> tuple[float, float, float, float]:
"""Get bounding box (physical coordinates)
Args:
obj: image object
"""
x0, y0, dx, dy = self.get_physical_coords(obj)
return x0, y0, x0 + dx, y0 + dy
def translate(self, obj: ImageObj, dx: int, dy: int) -> None:
"""Translate ROI
Args:
obj: image object
dx: translation along X-axis
dy: translation along Y-axis
"""
coords = self.get_indices_coords(obj)
coords[0] += int(dx)
coords[1] += int(dy)
self.set_indices_coords(obj, coords)
def get_physical_coords(self, obj: ImageObj) -> np.ndarray:
"""Return physical coords
Args:
obj: image object
Returns:
Physical coords
"""
if self.indices:
ix0, iy0, idx, idy = self.coords
x0, y0, x1, y1 = obj.indices_to_physical([ix0, iy0, ix0 + idx, iy0 + idy])
return [x0, y0, x1 - x0, y1 - y0]
return self.coords
def get_indices_coords(self, obj: ImageObj) -> np.ndarray:
"""Return indices coords
Args:
obj: image object
Returns:
Indices coords
"""
if self.indices:
return self.coords
ix0, iy0, ix1, iy1 = obj.physical_to_indices(self.get_bounding_box(obj))
return [ix0, iy0, ix1 - ix0, iy1 - iy0]
def set_indices_coords(self, obj: ImageObj, coords: np.ndarray) -> None:
"""Set indices coords
Args:
obj: object (signal/image)
coords: indices coords
"""
if self.indices:
self.coords = coords
else:
ix0, iy0, idx, idy = coords
x0, y0, x1, y1 = obj.indices_to_physical([ix0, iy0, ix0 + idx, iy0 + idy])
self.coords = [x0, y0, x1 - x0, y1 - y0]
def to_mask(self, obj: ImageObj) -> np.ndarray:
"""Create mask from ROI
Args:
obj: image object
Returns:
Mask (boolean array where True values are inside the ROI)
"""
roi_mask = np.ones_like(obj.data, dtype=bool)
x0, y0, dx, dy = self.get_indices_coords(obj)
roi_mask[max(y0, 0) : y0 + dy, max(x0, 0) : x0 + dx] = False
return roi_mask
def to_param(self, obj: ImageObj, title: str | None = None) -> ROI2DParam:
"""Convert ROI to parameters
Args:
obj: object (image), for physical-indices coordinates conversion
title: ROI title
"""
param = ROI2DParam(title=self.title if title is None else title)
param.geometry = "rectangle"
param.x0, param.y0, param.dx, param.dy = self.get_indices_coords(obj)
return param
def to_plot_item(
self, obj: ImageObj, title: str | None = None
) -> AnnotatedRectangle:
"""Make and return the annnotated rectangle associated to ROI
Args:
obj: object (image), for physical-indices coordinates conversion
title: title
"""
def info_callback(item: AnnotatedRectangle) -> str:
"""Return info string for rectangular ROI"""
x0, y0, x1, y1 = item.get_rect()
if self.indices:
x0, y0, x1, y1 = obj.physical_to_indices([x0, y0, x1, y1])
x0, y0, dx, dy = self.rect_to_coords(x0, y0, x1, y1)
return "<br>".join(
[
f"X0, Y0 = {x0:g}, {y0:g}",
f"ΔX x ΔY = {dx:g} x {dy:g}",
]
)
x0, y0, dx, dy = self.get_physical_coords(obj)
x1, y1 = x0 + dx, y0 + dy
title = self.title if title is None else title
roi_item: AnnotatedRectangle = make.annotated_rectangle(x0, y0, x1, y1, title)
roi_item.set_info_callback(info_callback)
param = roi_item.label.labelparam
param.anchor = "BL"
param.xc, param.yc = 5, -5
param.update_item(roi_item.label)
return roi_item
@staticmethod
def rect_to_coords(
x0: int | float, y0: int | float, x1: int | float, y1: int | float
) -> np.ndarray:
"""Convert rectangle to coordinates
Args:
x0: x0 (top-left corner)
y0: y0 (top-left corner)
x1: x1 (bottom-right corner)
y1: y1 (bottom-right corner)
Returns:
Rectangle coordinates
"""
return np.array([x0, y0, x1 - x0, y1 - y0], dtype=type(x0))
@classmethod
def from_plot_item(cls: RectangularROI, item: AnnotatedRectangle) -> RectangularROI:
"""Create ROI from plot item
Args:
item: plot item
"""
rect = item.get_rect()
return cls(cls.rect_to_coords(*rect), False, item.annotationparam.title)
class CircularROI(BaseSingleImageROI[AnnotatedCircle]):
"""Circular ROI
Args:
coords: ROI edge coordinates (xc, yc, r)
title: title
.. note:: The image ROI coords are expressed in physical coordinates (floats)
"""
# pylint: disable=unused-argument
@classmethod
def from_param(cls: CircularROI, obj: ImageObj, param: ROI2DParam) -> CircularROI:
"""Create ROI from parameters
Args:
obj: image object
param: parameters
"""
ix0, iy0, ix1, iy1 = param.get_bounding_box_indices()
ixc, iyc = (ix0 + ix1) * 0.5, (iy0 + iy1) * 0.5
ir = (ix1 - ix0) * 0.5
indices = True # ROI coordinates are in pixel coordinates in `ROI2DParam`
return cls([ixc, iyc, ir], indices=indices, title=param.get_title())
def check_coords(self) -> None:
"""Check if coords are valid
Raises:
ValueError: invalid coords
"""
if len(self.coords) != 3:
raise ValueError("Circle ROI requires 3 coordinates")
def get_bounding_box(self, obj: ImageObj) -> tuple[float, float, float, float]:
"""Get bounding box (physical coordinates)
Args:
obj: image object
"""
xc, yc, r = self.get_physical_coords(obj)
return xc - r, yc - r, xc + r, yc + r
def translate(self, obj: ImageObj, dx: int, dy: int) -> None:
"""Translate ROI
Args:
obj: image object
dx: translation along X-axis
dy: translation along Y-axis
"""
coords = self.get_indices_coords(obj)
coords[0] += int(dx)
coords[1] += int(dy)
self.set_indices_coords(obj, coords)
def get_physical_coords(self, obj: ImageObj) -> np.ndarray:
"""Return physical coords
Args:
obj: image object
Returns:
Physical coords
"""
if self.indices:
ixc, iyc, ir = self.coords
x0, y0, x1, y1 = obj.indices_to_physical(
[ixc - ir, iyc - ir, ixc + ir, iyc + ir]
)
return [0.5 * (x0 + x1), 0.5 * (y0 + y1), 0.5 * (x1 - x0)]
return self.coords
def get_indices_coords(self, obj: ImageObj) -> np.ndarray:
"""Return indices coords
Args:
obj: image object
Returns:
Indices coords
"""
if self.indices:
return self.coords
ix0, iy0, ix1, iy1 = obj.physical_to_indices(self.get_bounding_box(obj))
ixc, iyc = int((ix0 + ix1) * 0.5), int((iy0 + iy1) * 0.5)
ir = int((ix1 - ix0) * 0.5)
return [ixc, iyc, ir]
def set_indices_coords(self, obj: ImageObj, coords: np.ndarray) -> None:
"""Set indices coords
Args:
obj: object (signal/image)
coords: indices coords
"""
if self.indices:
self.coords = coords
else:
ixc, iyc, ir = coords
x0, y0, x1, y1 = obj.indices_to_physical(
[ixc - ir, iyc - ir, ixc + ir, iyc + ir]
)
self.coords = [0.5 * (x0 + x1), 0.5 * (y0 + y1), 0.5 * (x1 - x0)]
def to_mask(self, obj: ImageObj) -> np.ndarray:
"""Create mask from ROI
Args:
obj: image object
Returns:
Mask (boolean array where True values are inside the ROI)
"""
roi_mask = np.ones_like(obj.data, dtype=bool)
ixc, iyc, ir = self.get_indices_coords(obj)
yxratio = obj.dy / obj.dx
rr, cc = draw.ellipse(iyc, ixc, ir / yxratio, ir, shape=obj.data.shape)
roi_mask[rr, cc] = False
return roi_mask
def to_param(self, obj: ImageObj, title: str | None = None) -> ROI2DParam:
"""Convert ROI to parameters
Args:
obj: object (image), for physical-indices coordinates conversion
title: ROI title
"""
param = ROI2DParam(title=self.title if title is None else title)
param.geometry = "circle"
param.xc, param.yc, param.r = self.get_indices_coords(obj)
return param
def to_plot_item(self, obj: ImageObj, title: str | None = None) -> AnnotatedCircle:
"""Make and return the annnotated circle associated to ROI
Args:
obj: object (image), for physical-indices coordinates conversion
title: title
"""
def info_callback(item: AnnotatedCircle) -> str:
"""Return info string for circular ROI"""
x0, y0, x1, y1 = item.get_rect()
if self.indices:
x0, y0, x1, y1 = obj.physical_to_indices([x0, y0, x1, y1])
xc, yc, r = self.rect_to_coords(x0, y0, x1, y1)
return "<br>".join(
[
f"Center = {xc:g}, {yc:g}",
f"Radius = {r:g}",
]
)
xc, yc, r = self.get_physical_coords(obj)
item = AnnotatedCircle(xc - r, yc, xc + r, yc)
item.set_info_callback(info_callback)
item.annotationparam.title = self.title if title is None else title
item.annotationparam.update_item(item)
item.set_style("plot", "shape/drag")
return item
@staticmethod
def rect_to_coords(
x0: int | float, y0: int | float, x1: int | float, y1: int | float
) -> np.ndarray:
"""Convert rectangle to circle coordinates
Args:
x0: x0 (top-left corner)
y0: y0 (top-left corner)
x1: x1 (bottom-right corner)
y1: y1 (bottom-right corner)
Returns:
Circle coordinates
"""
xc, yc, r = 0.5 * (x0 + x1), 0.5 * (y0 + y1), 0.5 * (x1 - x0)
return np.array([xc, yc, r], dtype=type(x0))
@classmethod
def from_plot_item(cls: CircularROI, item: AnnotatedCircle) -> CircularROI:
"""Create ROI from plot item
Args:
item: plot item
"""
rect = item.get_rect()
return cls(cls.rect_to_coords(*rect), False, item.annotationparam.title)
[docs]
class ImageROI(
base.BaseROI[
"ImageObj",
BaseSingleImageROI,
ROI2DParam,
# `Union` is mandatory here for Python 3.9-3.10 compatibility:
Union[AnnotatedPolygon, AnnotatedRectangle, AnnotatedCircle],
]
):
"""Image Regions of Interest
Args:
singleobj: if True, when extracting data defined by ROIs, only one object
is created (default to True). If False, one object is created per single ROI.
If None, the value is get from the user configuration
inverse: if True, ROI is outside the region
"""
PREFIX = "i"
[docs]
@staticmethod
def get_compatible_single_roi_classes() -> list[Type[BaseSingleImageROI]]:
"""Return compatible single ROI classes"""
return [RectangularROI, CircularROI, PolygonalROI]
[docs]
def to_mask(self, obj: ImageObj) -> np.ndarray[bool]:
"""Create mask from ROI
Args:
obj: image object
Returns:
Mask (boolean array where True values are inside the ROI)
"""
mask = np.ones_like(obj.data, dtype=bool)
for roi in self.single_rois:
mask &= roi.to_mask(obj)
return mask
[docs]
def create_image_roi(
geometry: Literal["rectangle", "circle", "polygon"],
coords: np.ndarray | list[float] | list[list[float]],
indices: bool = True,
singleobj: bool | None = None,
inverse: bool = False,
title: str = "",
) -> ImageROI:
"""Create Image Regions of Interest (ROI) object.
More ROIs can be added to the object after creation, using the `add_roi` method.
Args:
geometry: ROI type ('rectangle', 'circle', 'polygon')
coords: ROI coords (physical coordinates), `[x0, y0, dx, dy]` for a rectangle,
`[xc, yc, r]` for a circle, or `[x0, y0, x1, y1, ...]` for a polygon (lists or
NumPy arrays are accepted). For multiple ROIs, nested lists or NumPy arrays are
accepted but with a common geometry type (e.g.
`[[xc1, yc1, r1], [xc2, yc2, r2], ...]` for circles).
indices: if True, coordinates are indices, if False, they are physical values
(default to True for images)
singleobj: if True, when extracting data defined by ROIs, only one object
is created (default to True). If False, one object is created per single ROI.
If None, the value is get from the user configuration
inverse: if True, ROI is outside the region
title: title
Returns:
Regions of Interest (ROI) object
Raises:
ValueError: if ROI type is unknown or if the number of coordinates is invalid
"""
coords = np.array(coords, float)
if coords.ndim == 1:
coords = coords.reshape(1, -1)
roi = ImageROI(singleobj, inverse)
if geometry == "rectangle":
if coords.shape[1] != 4:
raise ValueError("Rectangle ROI requires 4 coordinates")
for row in coords:
roi.add_roi(RectangularROI(row, indices, title))
elif geometry == "circle":
if coords.shape[1] != 3:
raise ValueError("Circle ROI requires 3 coordinates")
for row in coords:
roi.add_roi(CircularROI(row, indices, title))
elif geometry == "polygon":
if coords.shape[1] % 2 != 0:
raise ValueError("Polygon ROI requires pairs of X, Y coordinates")
for row in coords:
roi.add_roi(PolygonalROI(row, indices, title))
else:
raise ValueError(f"Unknown ROI type: {geometry}")
return roi
[docs]
class ImageObj(gds.DataSet, base.BaseObj[ImageROI, MaskedImageItem]):
"""Image object"""
PREFIX = "i"
CONF_FMT = Conf.view.ima_format
DEFAULT_FMT = ".1f"
VALID_DTYPES = (
np.uint8,
np.uint16,
np.int16,
np.int32,
np.float32,
np.float64,
np.complex128,
)
def __init__(self, title=None, comment=None, icon=""):
"""Constructor
Args:
title: title
comment: comment
icon: icon
"""
gds.DataSet.__init__(self, title, comment, icon)
base.BaseObj.__init__(self)
self.regenerate_uuid()
self._dicom_template = None
[docs]
@staticmethod
def get_roi_class() -> Type[ImageROI]:
"""Return ROI class"""
return ImageROI
[docs]
def regenerate_uuid(self):
"""Regenerate UUID
This method is used to regenerate UUID after loading the object from a file.
This is required to avoid UUID conflicts when loading objects from file
without clearing the workspace first.
"""
self.uuid = str(uuid4())
def __add_metadata(self, key: str, value: Any) -> None:
"""Add value to metadata if value can be converted into builtin/NumPy type
Args:
key: key
value: value
"""
stored_val = to_builtin(value)
if stored_val is not None:
self.metadata[key] = stored_val
@property
def dicom_template(self):
"""Get DICOM template"""
return self._dicom_template
@dicom_template.setter
def dicom_template(self, template):
"""Set DICOM template"""
if template is not None:
ipp = getattr(template, "ImagePositionPatient", None)
if ipp is not None:
self.x0, self.y0 = float(ipp[0]), float(ipp[1])
pxs = getattr(template, "PixelSpacing", None)
if pxs is not None:
self.dy, self.dx = float(pxs[0]), float(pxs[1])
self.set_metadata_from(template)
self._dicom_template = template
uuid = gds.StringItem("UUID").set_prop("display", hide=True)
_tabs = gds.BeginTabGroup("all")
_datag = gds.BeginGroup(_("Data"))
data = gds.FloatArrayItem(_("Data"))
metadata = gds.DictItem(_("Metadata"), default={})
_e_datag = gds.EndGroup(_("Data"))
_dxdyg = gds.BeginGroup(f'{_("Origin")} / {_("Pixel spacing")}')
_origin = gds.BeginGroup(_("Origin"))
x0 = gds.FloatItem("X<sub>0</sub>", default=0.0)
y0 = gds.FloatItem("Y<sub>0</sub>", default=0.0).set_pos(col=1)
_e_origin = gds.EndGroup(_("Origin"))
_pixel_spacing = gds.BeginGroup(_("Pixel spacing"))
dx = gds.FloatItem("Δx", default=1.0, nonzero=True)
dy = gds.FloatItem("Δy", default=1.0, nonzero=True).set_pos(col=1)
_e_pixel_spacing = gds.EndGroup(_("Pixel spacing"))
_e_dxdyg = gds.EndGroup(f'{_("Origin")} / {_("Pixel spacing")}')
_unitsg = gds.BeginGroup(f'{_("Titles")} / {_("Units")}')
title = gds.StringItem(_("Image title"), default=_("Untitled"))
_tabs_u = gds.BeginTabGroup("units")
_unitsx = gds.BeginGroup(_("X-axis"))
xlabel = gds.StringItem(_("Title"), default="")
xunit = gds.StringItem(_("Unit"), default="")
_e_unitsx = gds.EndGroup(_("X-axis"))
_unitsy = gds.BeginGroup(_("Y-axis"))
ylabel = gds.StringItem(_("Title"), default="")
yunit = gds.StringItem(_("Unit"), default="")
_e_unitsy = gds.EndGroup(_("Y-axis"))
_unitsz = gds.BeginGroup(_("Z-axis"))
zlabel = gds.StringItem(_("Title"), default="")
zunit = gds.StringItem(_("Unit"), default="")
_e_unitsz = gds.EndGroup(_("Z-axis"))
_e_tabs_u = gds.EndTabGroup("units")
_e_unitsg = gds.EndGroup(f'{_("Titles")} / {_("Units")}')
_scalesg = gds.BeginGroup(_("Scales"))
_prop_autoscale = gds.GetAttrProp("autoscale")
autoscale = gds.BoolItem(_("Auto scale"), default=True).set_prop(
"display", store=_prop_autoscale
)
_tabs_b = gds.BeginTabGroup("bounds")
_boundsx = gds.BeginGroup(_("X-axis"))
xscalelog = gds.BoolItem(_("Logarithmic scale"), default=False)
xscalemin = gds.FloatItem(_("Lower bound"), check=False).set_prop(
"display", active=gds.NotProp(_prop_autoscale)
)
xscalemax = gds.FloatItem(_("Upper bound"), check=False).set_prop(
"display", active=gds.NotProp(_prop_autoscale)
)
_e_boundsx = gds.EndGroup(_("X-axis"))
_boundsy = gds.BeginGroup(_("Y-axis"))
yscalelog = gds.BoolItem(_("Logarithmic scale"), default=False)
yscalemin = gds.FloatItem(_("Lower bound"), check=False).set_prop(
"display", active=gds.NotProp(_prop_autoscale)
)
yscalemax = gds.FloatItem(_("Upper bound"), check=False).set_prop(
"display", active=gds.NotProp(_prop_autoscale)
)
_e_boundsy = gds.EndGroup(_("Y-axis"))
_boundsz = gds.BeginGroup(_("LUT range"))
zscalemin = gds.FloatItem(_("Lower bound"), check=False)
zscalemax = gds.FloatItem(_("Upper bound"), check=False)
_e_boundsz = gds.EndGroup(_("LUT range"))
_e_tabs_b = gds.EndTabGroup("bounds")
_e_scalesg = gds.EndGroup(_("Scales"))
_e_tabs = gds.EndTabGroup("all")
@property
def width(self) -> float:
"""Return image width, i.e. number of columns multiplied by pixel size"""
return self.data.shape[1] * self.dx
@property
def height(self) -> float:
"""Return image height, i.e. number of rows multiplied by pixel size"""
return self.data.shape[0] * self.dy
@property
def xc(self) -> float:
"""Return image center X-axis coordinate"""
return self.x0 + 0.5 * self.width
@property
def yc(self) -> float:
"""Return image center Y-axis coordinate"""
return self.y0 + 0.5 * self.height
[docs]
def get_data(self, roi_index: int | None = None) -> np.ndarray:
"""
Return original data (if ROI is not defined or `roi_index` is None),
or ROI data (if both ROI and `roi_index` are defined).
Args:
roi_index: ROI index
Returns:
Masked data
"""
if self.roi is None or roi_index is None:
return self.data
single_roi = self.roi.get_single_roi(roi_index)
x0, y0, x1, y1 = self.physical_to_indices(single_roi.get_bounding_box(self))
return self.get_masked_view()[y0:y1, x0:x1]
[docs]
def copy(self, title: str | None = None, dtype: np.dtype | None = None) -> ImageObj:
"""Copy object.
Args:
title: title
dtype: data type
Returns:
Copied object
"""
title = self.title if title is None else title
obj = ImageObj(title=title)
obj.title = title
obj.xlabel = self.xlabel
obj.ylabel = self.ylabel
obj.xunit = self.xunit
obj.yunit = self.yunit
obj.zunit = self.zunit
obj.x0 = self.x0
obj.y0 = self.y0
obj.dx = self.dx
obj.dy = self.dy
obj.metadata = base.deepcopy_metadata(self.metadata)
obj.data = np.array(self.data, copy=True, dtype=dtype)
obj.dicom_template = self.dicom_template
return obj
[docs]
def set_data_type(self, dtype: np.dtype) -> None:
"""Change data type.
If data type is integer, clip values to the new data type's range, thus avoiding
overflow or underflow.
Args:
Data type
"""
self.data = clip_astype(self.data, dtype)
def __viewable_data(self) -> np.ndarray:
"""Return viewable data"""
data = self.data.real
if np.any(np.isnan(data)):
data = np.nan_to_num(data, posinf=0, neginf=0)
return data
[docs]
def update_plot_item_parameters(self, item: MaskedImageItem) -> None:
"""Update plot item parameters from object data/metadata
Takes into account a subset of plot item parameters. Those parameters may
have been overriden by object metadata entries or other object data. The goal
is to update the plot item accordingly.
This is *almost* the inverse operation of `update_metadata_from_plot_item`.
Args:
item: plot item
"""
for axis in ("x", "y", "z"):
unit = getattr(self, axis + "unit")
fmt = r"%.1f"
if unit:
fmt = r"%.1f (" + unit + ")"
setattr(item.param, axis + "format", fmt)
# Updating origin and pixel spacing
has_origin = self.x0 is not None and self.y0 is not None
has_pixelspacing = self.dx is not None and self.dy is not None
if has_origin or has_pixelspacing:
x0, y0, dx, dy = 0.0, 0.0, 1.0, 1.0
if has_origin:
x0, y0 = self.x0, self.y0
if has_pixelspacing:
dx, dy = self.dx, self.dy
shape = self.data.shape
item.param.xmin, item.param.xmax = x0, x0 + dx * shape[1]
item.param.ymin, item.param.ymax = y0, y0 + dy * shape[0]
zmin, zmax = item.get_lut_range()
if self.zscalemin is not None or self.zscalemax is not None:
zmin = zmin if self.zscalemin is None else self.zscalemin
zmax = zmax if self.zscalemax is None else self.zscalemax
item.set_lut_range([zmin, zmax])
super().update_plot_item_parameters(item)
[docs]
def make_item(self, update_from: MaskedImageItem | None = None) -> MaskedImageItem:
"""Make plot item from data.
Args:
update_from: update from plot item
Returns:
Plot item
"""
data = self.__viewable_data()
item = make.maskedimage(
data,
self.maskdata,
title=self.title,
colormap="viridis",
eliminate_outliers=Conf.view.ima_eliminate_outliers.get(),
interpolation="nearest",
show_mask=True,
)
if update_from is None:
self.update_plot_item_parameters(item)
else:
update_dataset(item.param, update_from.param)
item.param.update_item(item)
return item
[docs]
def update_item(self, item: MaskedImageItem, data_changed: bool = True) -> None:
"""Update plot item from data.
Args:
item: plot item
data_changed: if True, data has changed
"""
if data_changed:
item.set_data(self.__viewable_data(), lut_range=[item.min, item.max])
item.set_mask(self.maskdata)
item.param.label = self.title
self.update_plot_item_parameters(item)
item.plot().update_colormap_axis(item)
[docs]
def physical_to_indices(self, coords: list[float]) -> np.ndarray:
"""Convert coordinates from physical (real world) to (array) indices (pixel)
Args:
coords: coordinates
Returns:
Indices
"""
indices = np.array(coords, float)
ndim = indices.ndim
if ndim == 1:
indices = indices.reshape(1, -1)
if indices.size > 0:
indices[:, ::2] -= self.x0 + 0.5 * self.dx
indices[:, ::2] /= self.dx
indices[:, 1::2] -= self.y0 + 0.5 * self.dy
indices[:, 1::2] /= self.dy
if ndim == 1:
indices = indices.flatten()
return np.array(indices, int)
[docs]
def indices_to_physical(
self, indices: list[float | int] | np.ndarray
) -> np.ndarray:
"""Convert coordinates from (array) indices to physical (real world)
Args:
indices: indices
Returns:
Coordinates
"""
coords = np.array(indices, float)
ndim = coords.ndim
if ndim == 1:
coords = coords.reshape(1, -1)
if coords.size > 0:
coords[:, ::2] *= self.dx
coords[:, ::2] += self.x0 + 0.5 * self.dx
coords[:, 1::2] *= self.dy
coords[:, 1::2] += self.y0 + 0.5 * self.dy
if ndim == 1:
coords = coords.flatten()
return coords
[docs]
def add_label_with_title(self, title: str | None = None) -> None:
"""Add label with title annotation
Args:
title: title (if None, use image title)
"""
title = self.title if title is None else title
if title:
label = make.label(title, (self.x0, self.y0), (10, 10), "TL")
self.add_annotations_from_items([label])
[docs]
def create_image(
title: str,
data: np.ndarray | None = None,
metadata: dict | None = None,
units: tuple | None = None,
labels: tuple | None = None,
) -> ImageObj:
"""Create a new Image object
Args:
title: image title
data: image data
metadata: image metadata
units: X, Y, Z units (tuple of strings)
labels: X, Y, Z labels (tuple of strings)
Returns:
Image object
"""
assert isinstance(title, str)
assert data is None or isinstance(data, np.ndarray)
image = ImageObj(title=title)
image.title = title
image.data = data
if units is not None:
image.xunit, image.yunit, image.zunit = units
if labels is not None:
image.xlabel, image.ylabel, image.zlabel = labels
if metadata is not None:
image.metadata.update(metadata)
return image
[docs]
class ImageDatatypes(base.Choices):
"""Image data types"""
[docs]
@classmethod
def from_dtype(cls, dtype):
"""Return member from NumPy dtype"""
return getattr(cls, str(dtype).upper(), cls.UINT8)
[docs]
@classmethod
def check(cls):
"""Check if data types are valid"""
for member in cls:
assert hasattr(np, member.value)
#: Unsigned integer number stored with 8 bits
UINT8 = enum.auto()
#: Unsigned integer number stored with 16 bits
UINT16 = enum.auto()
#: Signed integer number stored with 16 bits
INT16 = enum.auto()
#: Float number stored with 32 bits
FLOAT32 = enum.auto()
#: Float number stored with 64 bits
FLOAT64 = enum.auto()
ImageDatatypes.check()
[docs]
class ImageTypes(base.Choices):
"""Image types"""
#: Image filled with zeros
ZEROS = _("zeros")
#: Empty image (filled with data from memory state)
EMPTY = _("empty")
#: 2D Gaussian image
GAUSS = _("gaussian")
#: Image filled with random data (uniform law)
UNIFORMRANDOM = _("random (uniform law)")
#: Image filled with random data (normal law)
NORMALRANDOM = _("random (normal law)")
[docs]
class NewImageParam(gds.DataSet):
"""New image dataset"""
hide_image_dtype = False
hide_image_type = False
title = gds.StringItem(_("Title"))
height = gds.IntItem(
_("Height"), help=_("Image height (total number of rows)"), min=1
)
width = gds.IntItem(
_("Width"), help=_("Image width (total number of columns)"), min=1
)
dtype = gds.ChoiceItem(_("Data type"), ImageDatatypes.get_choices()).set_prop(
"display", hide=gds.GetAttrProp("hide_image_dtype")
)
itype = gds.ChoiceItem(_("Type"), ImageTypes.get_choices()).set_prop(
"display", hide=gds.GetAttrProp("hide_image_type")
)
DEFAULT_TITLE = _("Untitled image")
[docs]
def new_image_param(
title: str | None = None,
itype: ImageTypes | None = None,
height: int | None = None,
width: int | None = None,
dtype: ImageDatatypes | None = None,
) -> NewImageParam:
"""Create a new Image dataset instance.
Args:
title: dataset title (default: None, uses default title)
itype: image type (default: None, uses default type)
height: image height (default: None, uses default height)
width: image width (default: None, uses default width)
dtype: image data type (default: None, uses default data type)
Returns:
New image dataset instance
"""
title = DEFAULT_TITLE if title is None else title
param = NewImageParam(title=title, icon=get_icon("new_image.svg"))
param.title = title
if height is not None:
param.height = height
if width is not None:
param.width = width
if dtype is not None:
param.dtype = dtype
if itype is not None:
param.itype = itype
return param
IMG_NB = 0
[docs]
class Gauss2DParam(gds.DataSet):
"""2D Gaussian parameters"""
a = gds.FloatItem("Norm")
xmin = gds.FloatItem("Xmin", default=-10).set_pos(col=1)
sigma = gds.FloatItem("σ", default=1.0)
xmax = gds.FloatItem("Xmax", default=10).set_pos(col=1)
mu = gds.FloatItem("μ", default=0.0)
ymin = gds.FloatItem("Ymin", default=-10).set_pos(col=1)
x0 = gds.FloatItem("X0", default=0)
ymax = gds.FloatItem("Ymax", default=10).set_pos(col=1)
y0 = gds.FloatItem("Y0", default=0).set_pos(col=0, colspan=1)
[docs]
def create_image_from_param(
newparam: NewImageParam,
addparam: gds.DataSet | None = None,
edit: bool = False,
parent: QW.QWidget | None = None,
) -> ImageObj | None:
"""Create a new Image object from dialog box.
Args:
newparam: new image parameters
addparam: additional parameters
edit: Open a dialog box to edit parameters (default: False)
parent: parent widget
Returns:
New image object or None if user cancelled
"""
global IMG_NB # pylint: disable=global-statement
if newparam is None:
newparam = new_image_param()
if newparam.height is None:
newparam.height = 500
if newparam.width is None:
newparam.width = 500
if newparam.dtype is None:
newparam.dtype = ImageDatatypes.UINT16
incr_sig_nb = not newparam.title
if incr_sig_nb:
newparam.title = f"{newparam.title} {IMG_NB + 1:d}"
if not edit or addparam is not None or newparam.edit(parent=parent):
prefix = newparam.itype.name.lower()
if incr_sig_nb:
IMG_NB += 1
image = create_image(newparam.title)
shape = (newparam.height, newparam.width)
dtype = newparam.dtype.value
p = addparam
if newparam.itype == ImageTypes.ZEROS:
image.data = np.zeros(shape, dtype=dtype)
elif newparam.itype == ImageTypes.EMPTY:
image.data = np.empty(shape, dtype=dtype)
elif newparam.itype == ImageTypes.GAUSS:
if p is None:
p = Gauss2DParam(_("2D-gaussian image"))
if p.a is None:
try:
p.a = np.iinfo(dtype).max / 2.0
except ValueError:
p.a = 10.0
if edit and not p.edit(parent=parent):
return None
x, y = np.meshgrid(
np.linspace(p.xmin, p.xmax, shape[1]),
np.linspace(p.ymin, p.ymax, shape[0]),
)
zgauss = p.a * np.exp(
-((np.sqrt((x - p.x0) ** 2 + (y - p.y0) ** 2) - p.mu) ** 2)
/ (2.0 * p.sigma**2)
)
image.data = np.array(zgauss, dtype=dtype)
if image.title == DEFAULT_TITLE:
image.title = (
f"{prefix}(a={p.a:g},μ={p.mu:g},σ={p.sigma:g}),"
f"x0={p.x0:g},y0={p.y0:g})"
)
elif newparam.itype in (ImageTypes.UNIFORMRANDOM, ImageTypes.NORMALRANDOM):
pclass = {
ImageTypes.UNIFORMRANDOM: base.UniformRandomParam,
ImageTypes.NORMALRANDOM: base.NormalRandomParam,
}[newparam.itype]
if p is None:
p = pclass(_("Image") + " - " + newparam.itype.value)
p.set_from_datatype(dtype)
if edit and not p.edit(parent=parent):
return None
rng = np.random.default_rng(p.seed)
if newparam.itype == ImageTypes.UNIFORMRANDOM:
data = rng.random(shape)
image.data = scale_data_to_min_max(data, p.vmin, p.vmax)
if image.title == DEFAULT_TITLE:
image.title = (
f"{prefix}(vmin={p.vmin:g},vmax={p.vmax:g},seed={p.seed})"
)
elif newparam.itype == ImageTypes.NORMALRANDOM:
image.data = rng.normal(p.mu, p.sigma, size=shape)
if image.title == DEFAULT_TITLE:
image.title = f"{prefix}(μ={p.mu:g},σ={p.sigma:g},seed={p.seed})"
else:
raise NotImplementedError(f"New param type: {newparam.itype.value}")
return image
return None